SOFTWARE HOT-SWAPPING TECHNIQUES FOR
UPGRADING MISSION CRITICAL APPLICATIONS
ON THE FLY

by

Gang Ao, B.Eng.

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fultillment of the requirements of the degree of

Master of Engineering

Ottawa-Carleton Institute for Electrical Engineering
Faculty of Engineering

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario
CANADA, KIS 5B6
February, 2000

(c) Copyright 2000, Gang Ao

The undersigned recommend to the Faculty of Graduate Studies
and Research the acceptance of the thesis

SOFTWARE HOT-SWAPPING TECHNIQUES FOR
UPGRADING MISSION CRITICAL APPLICATIONS
ON THE FLY

submitted by Gang Ao, B. Eng in partial fulfillment of the
requirements for the degree of Master of Engineering

Thesis supervisor
Tony White

gV —————

Chair, Department of Systems and Computer Engineering
Professor Rafik A. Goubran

ii

ABSTRACT

With the increasing demand for long running and highly available distributed serv-
ices, the ability to upgrade without taking down the operations of the mission critical soft-
ware deployed in the field is of great significance to today’s fast growing
telecommunication and information industry. It is noted that none of the existing software
maintenance approaches has provided a feasible solution to fulfil this goal. This thesis
theretore proposes a software hot swapping technique to accomplish a generic and robust
infrastructure at the initial design stage to accommodate the need of future software main-
tenance with minimum system service disruption. A description and thorough discussion
of issues concerning the software swappability as well as software hot swapping infra-
structure consisting of S-module. S-manager and S-proxy, is systematically presented for

the purpose of dynamic recontiguration.

The software hot-swapping infrastructure provides a auto-managed frumework
where subset of the software can be reconfigured on a module by module basis while
overall software execution consistency is maintained. The developed hot swap transaction
algorithm places special emphasis on minimizing the interference to the rest of the system
and suits well for the applications with zero-down time requirements. The research dem-
onstrates that the object-oriented paradigm combined with mobile code technology pro-
vides a solid foundation for the software hot-swapping technique. By applying the
software hot-swapping technique, the maintenance cost for software product, especially

for distributed, mission critical application, can be significantly reduced.

i

PEE R WARERR, MRS NEFHFERY T ERbREH

75 . A RERIFEE TR, e THEI AR TR
EPARIEREENESR. AT, BfrERH-ERORNSEETEE
EER. EEEHEE, FFRULHT RO ERE RN AR,
ERGR GRS —ERA TROFRR, LANE Hianerikie
EMAPEEETRFNTE . £ TARRGTERIERET
THEMEAERLE, WHZRNE T BRRTERETMR R HTERERR
MEETERKEFET., HIREESNERETERS).

ERHERERARRH T —EEHEENNERT, EREAK
HU LT ERETUBRISETESN, LAFRERFERE. S
KEUEH T R E A AR, TOEE R HRETY
T, LHEATETATTRIRE . FARERRE, HEERANK
HERNTEHREENEE T, JRET ERERRERNRRE. @i
ERESEERE RN, MECLERSEK, ETAT PRI
JAIRERER A T LA KRER .

ACKNOWLEDGEMENT

First [would like to express my gratitude to my two supervisors, Professor B. Pagu-
rek and Dr. T. White, for their guidance and patience throughout the preparation of this
thesis. I would also like to thank Dr. Andrzej Bieszczad who originally suggested the
research topic. The financial assistance from Nortel Networks Corporation is sincerely

appreciated.

[would like to take this opportunity to thank all my good friends who always give
me encouragement and support no matter where [am. A special thank to my best friend,
Yi Wang, for the extremely good understanding and love. Without friendship. my life

would be meaningless.

Finally, [want to thank my parents, my dear brother and sister. From the earliest
days, they have encouraged me to strive for excellence and provided overwhelming under-

standing, unconditional love and support that have enabled me to achieve it.

iv

Table Of Contents

Abstract 1]
Acknowledgment iv
List of Figures viii
CHAPTER 1.0 INTRODUCTION

.1 Research MOtIVALION........coovirreririneriecetee et er e srebaesnees l
l.L.1 Software Maintenance 1S COSY coonvieireneeeeeieeerercee e 2
1.1.2 The existing approaches for software maintenance...........covvieeinrenennnens 7
1.2 Thesis OBJECHIVE ..covuviiieiiiiteecc et eane il
1.3 Thesis OrganizZation........ceeoeereeeeererreieesenie e s e e ers e baesssenne 13
CHAPTER 2.0 THE FOUNDATION OF SOFTWARE HOT-SWAPPING

2.1 The basiC rEQUITEIMENLS ...c..covviriiirereeiierteeee e sresst e e s s s aneseans 15
2.1.1 Module Based Software SIUCIULEcoociiiiiiiiiie s 16
2.1.2 Dynamic EXtenSibility c.coeeoeeiiieeieeeeeeeee e 18
213 Managed INerface ACCESS ..c.vevivieieeiereeeetcrete e 18
2.1.4 SHALE SENSILIVE..eeenrereicrirerite ettt csstresse e ssssessssestssssesassssnesranersasrns 19
2.15 DElay SENSIIVE ..ottt ettt sresess s a s saas b bes 20
2.1.6 Minimizing Side-effeCt. ... vt 20
2.1.7 Service TranSPALEIICYcvvuereriiiricriinrncreressessrteesssseessessesessesresssssssnessseennnsrns 21
2.1.8 SECUIILY .ttt eceeceeee ettt e e e senteesas s sas et sesaesba s sessssesssessansessnonssonss 21
2.1.9 COde MODIILY .ttt csee e e eess st sss s s nsaseane 22
2.1.10 OS SUPPOTTL ..ottt et eses s sass s s s s s bnesane e eraens 22
22 Object Oriented Paradigm as the Foundation............cccininininncninnne. 23
23 Supports from Java Architecture........c..cooeevrerveueernene rvereeesstessesaseeaseassensenres 25
2.3.1 An object-oriented paradigmc..cccoviiircinciirnninscienet e ssssaseaes 25
23.2 Dynamic linking and dynamic eX{ensionc.emencmnecneenrcnnencneeeennn. 27
233 SYNChIONIZAION SEIVICEcooiinreieerrccecennecrenrcsesesestesesessesssesseseessessnsses 28
234 Platform independenceccceueeeeence . .29
235 SECUNLY -.vveemeerecrectrereeeeeresceseenseeseesaeseseseseneesesnes coresseeseesserenres 30
2.3.6 Network mobility......cccoeceeceervnicnnn.n. creeeereerrnsssesense 3D
237 Run time introspection............... reeseseenrrsnnssesssnnes 35

2.3.8
2.3.9
2.4

24.1
24.2
243
2.4.4

25

Java’s DrawbacK ...ueereecerernmieniticiieniecereieretee e e 36
AIEIMALIVES ..ottt et e e s e b r e ernes 37
Potential solutions for software hot-swapping technique........ccoccerevveeinnnnnnnnen. 38
Solutions at Operating System Level ... 38
Solutions at system level ... 40
Solutions at application leVel.......c. e 41
The research ASSUMPLON....c.cvciuerimiiiiiceee et raees 43
CONCIUSION .o eeeeeenreeeeeereesiereeeeereesrrteeeseesessesesssessnassaesrsressseesssssssssnssensosassonsessonns 44

CHAPTER 3.0 SOFTWARE HOT-SWAPPING ARCHITECTURE

3.1

32

3.2.1
322

-

3.23

33
3.3.1
332
34
34.1
35

AL OVEIVIEW ovceeirrenineeriereesveseosasessesessses s sesssesssssss e sessassassstassesssesrasssasnsersensnes 45
The specification of S-MOAUIESovvemiiii e 47
The characteristics and interface of an S-module ..o, 48
Prepare tor S-modUule ... 53
Negative effects 0f OO ... reene 55
SoPIOXY cevereerreeneiesencret sttt s s e e b e e r e e ae s ae st bbb 56
S-proxy for referential problem ... 58
Functional modification and eXtension..........ciinnninennnenineie s 59
Swap manager and itS SEIVICES c..oviviiriiriiiiiiireteree e e e 62
The services of SWapP MANQAZEET ...c.cvveiiimiinriirreirenriiereeererreeresreesaessessseeeses 62
CONCIUSIONS eeeeeeeeeeeeeceee ettt e srs s s e s ssebaes s e 66

CHAPTER 4.0 THE SOFTWARE HOT-SWAPPING TRANSACTION

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3
4.4
4.5
4.5.1

4.6

An overview of transiaction CONCEPL....cccuivirreinieerenrcrniiereesereersveesnrssessnssrnnes .67
The notation and the ACID properties.........cooveviienniinereiniinnneneereenes 67
Approaches for the state consistency of an object........ovoeeerriinnnennnnn, 68

The transaction in the hot-swapping architecture.........coeeveenmrecrrcnsiencnennnene 69
The S-application tranSactioncoeeieiinnnrceerreeeeestenennens T .70
The swap transaction in the hot-swap architecture.........ooooeeievenicneninnecnnnnns 70
The state of an S-module and its checkpoint..........oevinnninnnnnn, 72

The state machine of an S-modulecocevvrverinnene... reeesrersrsresae e resaeane 80

The state machine of an S-proxycccceevevceininincnnns 82

S-manager in SWap tranSaClioNoo.ceeveevuermminersecrensieesenens 85
The state machine of the Swap Manager......................... 85

The two-phase commit transaction model ...87

vi

CHAPTER 5.0 IMPLEMENTATION AND APPLICATION

5.1 The implementation of the software hot-swapping architecture............cccuunee... 93
5.1.1 O i T4 [T 4 ¢ OO 93
5.1.2 Interface for the S-proXy......ceeeeeerrenmiiciennic s seseesssseses 96
5.1.3 SequenCe diAZIAMcoueierieeieeereriri et e nens 99
5.2 Application of software hot-swapping architeCturecooevveeeviiervnereeceeneenes 102
521 An experimental appliCation........ccocoiniiiin 103

CHAPTER 6.0 CONCLUSIONS

6.1 SUMIMAIY .ottt e ere e ss s be e e sbe i b ensensnes 117
6.2 CONCIUSIONS . oeeieeeeeeeeeeerereeeesereesessessssseessesesteeseeseesersissraserrasrsnsassnssesnsssrsnssrnssrnes 119
6.3 Directions FOr FULUIE WOIK ..vvvivieeeeieeeeeieeieerereereereeeseeeereeeeeerresseesssssesesssssnseseses 120

vii

2.5:
Fig. 3.1:
Fig. 3.2:
Fig. 3.3

Fig. 3.6:

Fig.5.5:
Fig. 5.6:

Fig. 5.9:

Fig. 5.10:
Fig. 5.11:
Fig. 5.12:
Fig. 5.13:

List of Figures

Cost of each phase of software lifecycle......cocovnimiiin 3
Module based SOTIWATEc.ccoveerieiireiieititcceree e 17
Inter-module communication Middlemanccocooovvenreennvncininenenennnenne 18
The Java Virtual Machineooevverrciniinieeceec e 25
Swap an object inside a Java Virtual Machine ..., 40
Different proposals for composing S-application software ... 41
A server application in a distributed environment........cccooeniiiinnennn, 45
The software hot-swapping architeCturecccee oo, 46
Reterential Updateoovovveniiiiiiiece s 57
The problem of reference propagating...........oveevevveereeeieeereereieeeeeeenne 57
Proxy approach for referential problem ... 58
Functional extension problem ... 60
NewService interface for an S-proxXy ..o 61
A SWUP ITANSUCHON oeeereirirrertirenrresrress et srresresssere e ssersrsesbas e s sebseesesnessbansnans 71
Identify S-application Transaction and Swap Transactioneevveveveercenes 78
The state machine of an S-moduleoovviiriiiiini e 81
The state Machine of AN S-ProXy..cco ettt eseesssenne 83
The state machine of the Swap Managerovvvrinicniinenieneneeeeeenenne 86
The two-phase commit transaction model ... 92
Use case diagram for the software hot-swapping architecture 94
Main Classes Diagram for the Software Hot-swapping Architecture............... 95
The important roles of AN S-ProxXy ... 98
Sequence Diagram for the case of swapping an S-module............cccuvinennenen. 99
The structure of a swappable SNMP Agent........occoevivvivnincmncnnennee. 102
An experimental application of our hot-swapping techniqueccocuuenen. 108
Swap S-modules with dependent relationship ... 110
Administrator PANEL........ooiiiiiiee s 11
Application Client panelovuveveremieeccrereen e sesaaees 112
Application server and its SWap MANAZETcovrmreeererrererisceseseesssesessenseseens 113
The result of swapping S-module S1 and S-module S3..........ccoveierennenn. 114
The print out of swapping S-module S1 and S-module S3 LS
The result of aborting a swap tranSACUONc..coveveeereecrrererrerncerrereerereeeeseenns 116

viii

CHAPTER 1.0 INTRODUCTION

1.1 Research Motivation

This thesis research is fundamentally motivated by the challenge of upgrading
distributed. mission critical software while it is in operation without taking down its
service. First of all, there is an increasing demand for a flexible and cost-effective
solution for the software dynamic reconfiguration from the telecommunication and
information technology industry. Secondly, there have not been any viable solutions that

adequately address the industry demand.

The term. "hot swap”, which was originally used for the replacement of a hardware
device while the system remains in operation [1], has been used in this thesis for the
replacement of a part of software programs while the overall program remains in
operation. By achieving this goal. the ability to maintain distributed. mission critical
software can be significantly improved and the maintenance cost can be significantly

reduced.

1.1.1 Software Maintenance is Costly

With communication networks developing and evolving at a rapid pace, distributed
computing and distributed embedded systems have become more and more widespread in
commercial, industrial and research establishments. Notably, functionality of
communication equipment is largely performed by software. In general. sottware often

needs to be changed for the following well-known reasons:

) Software is prone to human crror, thus it can not be perfect.
) Software is a model of reality. and as that reality changes, the software must adapt.
. The functionality of the product has to be extended beyond what is teasible in

terms of the original design.

) Software is easier to change than hardware. On the one hand, successful software
survives well beyond the lifetime of the hardware for which it was written. On the
other hand, more appropriate hardware components become available while the soft-
ware is still viable. In general, the software will have to be modified to some extent

in order to run on the new hardware.

Approximate relative costs of the phases of the software life cycle

B0 1o o e e e e e e e -

The relative costs

2”0

: , ey
Planning Desgn Module coding Module testing Integration Mantenance
software life cycle

Fig. 1.1: Cost of each phase of software lifecycle

As a matter of fact, studies have indicated that about two-thirds of the total software
effort is devoted to maintenance and upgrade, and more money is spent on maintenance
and upgrade than on all other software activities combined (2, 3]. Fig.1.1 illustrates the

approXimate percentage of time/money spent on each phase of the software life cycle.

[n distributed systems, it is extremely common that the system is quite complex and
software is distributed across multiple networks/system domains. Therefore distributed
software is unlikely to be fault-free and ongoing bug fixes and functional enhancement
are inevitable. On the other hand. distributed systems need to evolve constantly as market
demands. technology. and the application environment are changing constantly. Hence
one of the major challenges for designing distributed systems is to possess the ability to
accommodate evolving changes, particularly with respect to the management of changes,
as many system functions may require later upgrades. Those upgrades normally involve
bug fixes. modification of an existing function in the system or an extension of system

features by introducing new functions.

In general, evolutionary changes are not easy to predict as they can neither be clearly
defined nor identified at the system design stage. Due to time to market pressures, a
product needs to be deployed before enhanced versions become available. Therefore
maintenance is particularly difficult for communication network applications that are

widely distributed across heterogeneous domains.

In summary, the extra difficulty stems from the following sources:

Firstly, many distributed applications are distributed so broadly that it is difficult,
sometimes even impossible, to maintain them on site. Consequently, it is important to be

able to maintain these applications remotely.

Secondly, mission critical applications are required to have zero or close to zero down
time. As a result, in many cases, it is extremely important not to have to take the system
down for software upgrading and/or recompilation. Besides calculating the maintenance
cost of distributed, mission critical applications, one must take the cost of system

interruption into consideration.

Thirdly. the scheme for maintaining software on the fly has to be robust, minimizing the
disruption to the applications and leaving the applications in a consistent state. This
requirement is the most challenging one, as the applications must run continuously even

though there are frequent needs for bug fixes or functional upgrades

Fourthly, maintaining software on the fly should be transparent to the users of the
application and it should not expect the cooperation from the user side during the process

of maintenance.

For the above reasons, many of the applications that are distributed, complex, and
mission critical require special consideration in their maintenance approaches. Such
applications can be found in network management, communication switches, process
controllers, and security applications, etc. For instance, upgrading software on
telecommunications equipment deployed in the field is often a major headache, as
telecommunication carriers demand that their equipment can tolerate no more than a few
minutes of downtime per year. In many cases, telecommunications equipment makers are

mandated by government regulations to provide zero or close to zero downtime.

Therefore. there is a real incentive in the communication industry to resolve the
maintenance problem with a sound underlying infrastructure under the pressure of very

stringent requirements for system disruption.

We believe that the key to reducing software maintenance costs is to resolve the problem
at the initial design stage. That is, the system software should be designed such that it is
sufficiently flexible to permit incremental changes when necessary. [t is required that
software design should, as far as feasible, take future dynamic reconfiguration into

account and provision all possible upgrades.

1.1.2 The existing approaches for software maintenance

In practice, the following approaches are presently being used in the industry for software

upgrade. The pros and cons of each individual approach are listed as follows.
1.1.2.1 Re-installing new software

Tuking down the device and re-installing new version of software is the most popular
way of upgrading software. Its advantage is that the software can be changed without
much constraint. The disadvantage is that the service is interrupted. Sometimes the whole
system has to be shut down for a small change of the code. It often takes a significant
amount of time and eftort to take down the device. install new software, and reboot all
the devices. Clearly mission critical applications can not afford this type of interruption

due to their close-to-zero downtime or zero downtime requirements.
1.1.2.2 Patching

According to the definition [1], a patch (sometimes called a "fix") is a quick-repair job
for a piece of program. Problems (called bugs) in a program will almost invariably be
found. A patch is usually developed and distributed as a replacement for or an insertion
into compiled code (that is, in a binary file or object module) and some memory space is
left for this kind of insertion. In larger operating systems, a special program is provided

to manage and keep track of the installation of patches.

-7-

The advantage of patching is that it reduces the time to upgrade software. The
disadvantage is that the device still needs to be rebooted thus causing service interruption.
There are also limitations in program modification plus the uncertainty as to how much
spare memory space to provision in the first place, which could be either a waste or

insufficient for the code insertion.

1.1.2.3 Redundant device

A redundant device stands by and traces the working device. Software upgrades can be
pertormed on a spare device. Then, the spare device takes over the job from the working
device. Traditionally telecommunication equipment makers have relied on network and/
or equipment redundancies to facilitate upgrades, which not only allow smooth upgrades

but also support fault tolerance. This approach belongs to hardware hot-swap.

However, this traditional method also has its limitations. It is more suited to centralized
large and expensive equipment where space and cost are less of a concern than it is to a
system distributed over the network. Another disadvantage of this approach is that some
system transactions may be lost during device switching. Also, some system data may not
be share-able between the working and redundant device because they are associated with

the installation and configuration of different devices and different versions of software.

1.1.2.4 Parallel processor

Similar with redundant device approach. a pair of parallel processors can be used for
upgrading software. One processor works on the old version of software while a parallel
processor works on the new version of software. They share data and files through shared
memory, so one processor can be switched to another one and continuously work on the
same data. Its advantage is that the switch procedure between parallel processors can be
seamless and there is no need for extra device. Its disadvantage is that it requires a special
operating system and it is complicated and not feasible for many embedded applications.
There are also limitations on the type of software change. For example, the two

processors have to work exclusively on shared data and files.

1.1.2.5 Dynamic object technology

This is an existing approach that allows for software changes on the fly. Common Lisp
Object System (CLOS) takes advantage of the Lisp programming language which can be
modified while the program is running without necessarily having access to, or

knowledge of, those parts of the application which are unaffected by the change [4, 5, 6].

Its advantage is that programs can be developed and delivered more easily, because only
the broken part needs to be refined while the application is still running. Mission-critical
applications can be maintained more easily, because the programs themselves can be
simpler, more robust and easier to develop and maintain. Its disadvantage is that
reflective languages including Lisp are not very popular in industry application.

Moreover, the execution speed of Lisp is relatively slow.

1.1.2.6 Mobile Agent Technology

Mobile agent technology demonstrates some success tor upgrading software dynamically.
Through the agent. certain existing applications can be upgraded at run time without
interrupting its service. A research [7] demonstrates that DPI protocol can be used for a
mobile agent to dynamically extend SNMP MIB and the RDPI protocol can be used for a
mobile agent to issue management requests to the SNMP agent, in this way it actually can
upgrade SNMP MIB at run time. However. this technology has a rather limited
application scope in that it did not provide a general framework for software

reconfiguration.

-10 -

In view of the foregoing, it is clear that none of the existing software upgrade approaches
is sufficient for distributed mission critical software maintenance. We believe that it is
absolutely necessary to develop a new technique to support low cost and high efficiency
software maintenance with minimum service disruption. With this technique, mission
critical applications will have a sound underlying software infrastructure to achieve this

goal.

With the arrival of the object-oriented programming language Java which provides
network mobility, network security, platform independence as well as dynamic linking
and dynamic extension features etc., it is finally possible of developing a software
technique that is inherently suitable for accommodating future upgrade at the initial
design stage. This new technique. which we call software hot-swapping, is aimed at
enabling the system administrator to upgrade or replace the software remotely while the

whole software system remains in operation.

1.2 Thesis Objective

Therefore, this thesis research is focused on developing a technique, the hot swapping
technique, allowing on-line program maintenance without taking down its service. The
objective of this thesis is to systematically present the software hot-swapping technique

and its infrastructure.

-11 -

With our software hot-swapping infrastructure, software executing in a managed element
in a network can be upgraded without disrupting the existing execution environment and
state of operations or relying on an external redundant back-up unit, i.e., the hot-swap of
software on a module-by-module basis to maintain software on the tly. The research is to
demonstrate that the object-oriented paradigm combined with mobile code technology
can provide the foundation for software hot-swapping technique. By applying the
software hot-swapping technique. the maintenance cost for software products, especially

for those distributed. mission critical applications can be significantly reduced.
Accordingly. this thesis is aimed at the following:

o Having assessed the pros and cons of the existing software maintenance
approaches, a set of principles on which the swappablity of distributed and mission
critical software is based are to be proposed. To this end, software modularity is to

be studied and software hot swapping foundation is to be presented.

o To systemically present a hot swapping infrastructure to manage the dynamic soft-
ware upgrade on demand automatically. And to define all the major components

and their roles and services in the infrastructure.

® To develop a generic strategy on maintaining the state integrity of an application
during swap transactions. And to present a two-phase -commit transaction model in

order to ensure the robustness and the service continuity of the application.

o To analyze various practical sccnarios that thc hot-swapping technique may
encounter and provide comprehensive solutions and guidelines. To implement the

hot-swapping infrastructure and prove its concept and usages in real applications.

1.3 Thesis Organization

The rest of thesis is organized as follows.

Chapter 2 will start with the discussion of the requirements and principles for hot-
swappable software. With the introduction of the object-oriented paradigm
and Java features, the toundation ot software hot swap techniques and its

challenging issues will be presented.

Chapter 3 will introduce the software hot-swapping architecture and its major compo-
nents including the S-module, S-manager and S-proxy. A detailed descrip-
tion of the roles, characteristics and services of each component will be

provided.

-13-

Chapter 4

Chapter 5

Chapter 6

will analyze the hot-swap transaction within the software hot-swapping
architecture. The two-phase commit transaction model will be introduced
and strategies to tackle various challenging issues in hot-swapping transac-

tions will be detailed.

will describe the implementation and testing of the proposed software hot-

swapping architecture.

will summarize the thesis contribution, draw conclusions and recommend

future work.

-14 -

CHAPTER 2.0 THE FOUNDATION
OF SOFTWARE HOT-SWAPPING

To reduce the cost of software maintenance and to accommodate future reconfiguration at
the initial design stage. it is important to clearly understand the basic requirements and
principles for swappable software. It is based on these principles that software hot-
swapping foundation is established to tackle various challenging issues in upgrading

mission critical software on the fly without taking down its services.

2.1 The basic requirements

Not any arbitrary application can be upgraded on the fly. On the contrary, most existing
software is machine dependent and can not be dynamically modified. Swappable
software requires an architecture that can manage and fucilitate swapping operation while
sustaining most of its services. Moreover, the applications applying hot-swapping
technique (hereatter called S-applications in this thesis) should be constructed according

to certain generic principles that can be realized in a simple, robust and reliable fashion.

-15-

The following details the requirements for swappable software coming out of this thesis
research. Some of them are functional requirements, which means that the goal of
software hot-swapping can not be achieved without it. Other requirements are non-
fundamental requirements. which means although desirable, you may swap software
without necessarily satisfying these requirements. However, non-functional requirements

are also very important features of the technique.

2.1.1 Module Based Software Structure

Swappable software should have a modular structure that consists of one or more
swappable modules. It must be configured into a set of swappable modules bascd on
certain criteria so that it can be replaced/changed in a module-by-module fashion instead
of altering the entire program all at once, which would surely cause service interruption.
The modular structure is based on the decomposition criteria known as intormation
hiding. According to this principle [8], system details that are likely to change
independently should be the secrets of separate modules; each data structure is used in
only one module; it may be directly accessible within the module but not from outside the
module. The only way to access information stored in a module’s data structure from
outside is through those interfaces provided by that module. Therefore, any change on

one independent module will not affect other modules in the program.

-16 -

Module-1

Module-1

A

SO

3

pumbag pmdbdog

.Modulc-! ' lModulc-Z '

beewd beeowmd
a b

Fig. 2.1: Module based software

For example. in Fig. 2.1a, Module-1 has some internal information like A, B. C and D
and Module-2 can only access this information through the intertace of Module-1. If A is
changed into A’ and B is removed from Module-1(Fig. 2.1b), these changes remain
inside of Module-1 and will not affect Module-2. In another word, Module-1 gets

upgraded without affecting its cooperation with Module-2.

It should be pointed out that module based software is not a functional requirement for
software hot-swapping, because some interpreted programming languages like Lisp and
Prolog can be upgraded on-the-fly without following this rule. However, modular

structure is the main stream of software application.

17 -

2.1.2 Dynamic Extensibility

Keep in mind that swappable software needs to be modified at run time and re-
compilation at run time without interrupting service is not possible. Sottware upgrading
will involve some changes of interface and functionality, and the software hot-swapping
architecture should be able to manage and support interface extension and interface

change dynamically.

2.1.3 Managed Interface Access

Furthering the modular information hiding principle, the inter-module communication of
the application has to be controlled to retain the inter-module relationship atter one or

multiple module have been swapped.

Controlled
Inter-module

Communication
Middleman

Fig. 2.2: Inter-module communication Middleman

- 18-

For instance, as shown in Fig. 2.2, if Module A and Module B have a direct
communication interface, when B is replaced by C, A’s communication channel should
be switched to C automatically from B. The inter-module communication can be
controlled through a middleman layer so that the relationship between those modules can
be changed at runtime. In another words. the software hot-swapping infrastructure has to
provide some types of middleman services to manage the inter-dependent modules at

runtime.

2.1.4 State Sensitive

The hot swappable software is state sensitive. The mechanisms involved in a hot-swap
must keep the integrity and continuity ot the application while the swap is taking place. It
is important that as the application is being upgraded on the ftly. its state has to be
preserved for all the active transactions. Otherwise, the integrity and continuity of the
application can not be guaranteed. [n other words, whether or not the swap operation is

successful, valuable system data should not be lost in between.

To meet this requirement, the application services activities must be synchronized with
the swap activities in order to manage the state of the application. Since this mechanism
involves many low-level and error-prone activities, it has to be done in an automatic and

robust fashion.

-19-

2.1.5 Delay Sensitive

Many mission critical software applications are real time applications. One of the main
reasons why an application needs hot-swapping is because that its services have to be
available to its users at all times. Therefore a time constraint is necessary to prevent the
hot-swap activity from violating the availability of the application. The hot-swap
operation itself should be able to work under a time constraint in order to minimize the
interruption tor the S-upplication. In other words. the hot-swapping technique should
have a very efficient mechanism to minimize its interruption to the S-application and

satisfy the time constraint.

2.1.6 Minizing Side-effect

The subset of the software modules undergoing the hot swap should not interfere much
with the execution of the rest of the system. As described in the section 2.1.1, any
application that applies the hot-swapping technique has to be configured into a certain
module-based structure. In order to be practical, the hot-swapping technique should be
simple, efficient, robust and scalable. This modular structure should not introduce too
much overhead into the application that would affect its real time performance.
Obviously, there is no reason to sacrifice too much efficiency of an S-application merely

for a possible evolution that might not occur very often.

-20-

As we know, the inter-module communication of an application is normally through local
method invocation. However, distributed objects such as Jini components communicate
through RMI or CORBA objects communicate through an ORB both of which have a

performance penalty during the procedure of marshalling and un-marshalling parameters.

Side effects that the software hot-swapping technique may bring to an S-application also
include system resource occupation. The software hot-swapping intrastructure should not

be too "bulky”. Otherwise. its scalability and real time response would be very limited.

2.1.7 Service Transparency

The hot-swap operation should be transparent to client applications and it cian not expect
any cooperation from its client side during the process of hot-swapping. Also. clients

should not suffer trom any notable service degradation overall.

2.1.8 Security

Security is an important issue to consider in the hot-swap operation. Mission critical
applications often suffer from malicious attacks from hackers and viruses. Without some
guarantee of the security of the system and application, the hot-swapping technique will
not have any practical significance. Obviously, all the network security schemes can be

used to safeguard the hot swap transactions.

2.1.9 Code Mobility

Remote maintenance of distributed applications requires code mobility over the network.
With code mobility, new versions of software modules can be prepared remotely and then

sent to the target network node to replace stale versions.

[deally, the mobile code should be platform independent. Since the distributed network is
often a heterogeneous environment consisting of different network nodes/devices made
by different vendors, the administrator may have to prepare a different version of the
program for different platforms. Without the platform independent characteristic, the
code network mobility is less attractive. So code mobility combined with platform

independence are desirable in the hot-swapping technique.

2.1.10 OS Support

The hot-swapping software needs support from the operating system. Without the support
of the underlying operating system, it is impossible to conduct software hot-swapping.
Traditionally, software is required to be pre-compiled and pre-linked in order to become
executable. Any changes to the software must be followed by recompiling and/or
rebuilding. However, the dynamic creation, dynamic deletion and dynamic linking of
instances of software modules will happen during the process of on-line upgrading, so the

operating system is required to support these activities.

As is mentioned in Section 2.1.4, the application services activities must be synchronized
with the swap activities in order to manage the state of the application. The
implementation of this kind of synchronization mechanism could be significantly

simplified through support trom the operating system.

Among those ten basic requirements. Code mobility and OS support are functional
requirements. Without satistying these two requirements, software hot-swapping would

be impossible.

2.2 Object Oriented Paradigm as the Foundation

As hot swappuble software has to be module based, one may think of the so-called
structured paradigm to be the hot swapping foundation since it first proposed the modular
software concept. However. it is proven that structured design/testing techniques are less
successful in two respects [3]. First, the techniques were sometimes unable to cope with
the increasing size of software products. The maintenance phase is the second area in
which the structured paradigm has not lived up to earlier expectations. The reason for the
limited success of the structured paradigm is that the structured techniques are either

action oriented or data oriented, but not both.

In contrast, the object-oriented paradigm considers both data and actions to be of equal

importance. A simplistic way of looking at an object is as a unified software component

-3 -

that incorporates both the data and the actions that operate on the data. The object-
oriented paradigm makes maintenance quicker and easier, and the chance of introducing a
regression fault is greatly reduced. It is clear that the object-oriented paradigm establishes

a good foundation for hot-swapping techniques.

In this paradigm, swappable software will consist of multiple objects. An object consists
of both data and the actions that are performed on that data. [f all the actions that are
performed on the data of an object are included in that object, then the object can be a
conceptually independent entity. This conceptual independence is termed encapsulation.
In a well-designed object, information hiding ensures that implementation details are
hidden from everything outside that object. The only allowable form of communication is
the sending of a message to the object to carry out a specific action. The way that the
action is carried out is entirely the responsibility of the object itself. When the object-
oriented paradigm is correctly used, the resulting product consists of a number of smaller,
essentially independent units. The object-oriented paradigm reduces the level of
complexity of a software product and simplifies both development and maintenance.
Another positive feature of the object-oriented paradigm is that it promotes reuse.
Because objects are independent entities, they can be utilized in future products. The

reuse of objects reduces the time and cost of both development and maintenance.

All in all, the object-oriented paradigm builds a solid foundation upon which software

=24 -

hot- swapping techniques can be built.

2.3 Supports from Java Architecture

By analyzing basic requirements for the software hot-swapping technique. it is not
difficult to find that Java language combined with object-oriented architecture can

provide excellent support and greatly facilitate the hot swap.
2.3.1 An object-oriented paradigm

The Java architecture is an object-oriented paradigm includes the following tour parts

[9]:

¢ The Java Virtual Machine

The Java Virtual Machine

program’s lass Java API's
class filesf———® 5 @— (g5 iles

l bytecodes

| |
| |
| |
| execution !
| |
I !

engine

Host operating system

Fig. 2.3: The Java Virtual Machine

-25 -

As shown in Fig. 2.3, the Java Virtual Machine contains a class loader and an execution
engine. The class loader loads class files from both the program and the Java API and
only those class files from the Java API that are actually needed by a running program are
loaded into the virtual machine. The infrastructure of class loader contributes to many
nice features of Java such as dynamic linking and dynamic extension, code mobility,
security which will be explained in the tollowing context. The bytecodes that class loader
loaded are executed in an execution engine. which can vary in difterent implementations
so that it can cooperate with different operating system through native method

invocations. Thus, the structure of execution engine can support platform independence.

¢ The Java class file

The Java class file is a binary file of a Java program which can be run by the Java Virtual

Machine. It is easy to be compact and can be transmitted over networks very quickly [9].

¢ The Java Application Programming Interface

The Java API is a set of runtime libraries that provide a standard way to access the
system resources of a host computer. Java also provides Security API to support security

implementation.

¢ The Java programming language

-26 -

Java is an object-oriented language that promotes the reuse of code. Compared to C++,
Java has some significant advantages in improving productivity of the developer.
Because Java has restrictions on direct memory manipulation and provides automatic
garbage collection, programmers need not worry too much about memory management.
[n addition, the Java API provides many standard libraries which also promote the reuse

of code.

2.3.2 Dynamic linking and dynamic extension

Java’s linking model allows extension of an application at runtime by customizing class
loader objects. Through class loader objects, the application can load and dynamically
link to classes and interfaces that were unknown or did not even exist when the
application was compiled. I[n addition, because different class loader objects have
different naming spaces. the Java architecture can allow different classes with the same

name to co-exist in the same Java Virtual Machine without any contflict.

When an application is being upgraded on the tly, some new classes/objects, which may
be either brand new or familiar to the application, will join the application at runtime.
The Java Virtual Machine has no problem supporting this kind of dynamic linking and

extension.

227 -

2.3.3 Synchronization service

Java supports multi-threading at the language level and it provides a monitor facility to
synchronize the activities among threads. A monitor supports two kinds of thread
synchronization: mutual exclusion and cooperation. Mutual exclusion enables multiple
threads to work on shared data independently without interfering with each other.
Cooperation enables threads to work together toward a common goal through wait and
notity methods. A monitor can be associated with critical sections so that only a single

thread i1s executed at a time.

When one upgrades applications at run time, there are two Kinds of transaction co-
existing, namely service transaction, which is initiated by user to request service from the
S-uapplication, and swap transaction. which is initiated by system administrator to conduct
software hot-swapping. To preserve the in:zegrity of the S-application, the service
transaction and the swap transaction have to be synchronized. The monitor facility
provided by Java can significantly simplify the implementation of those synchronization

activities.

-28 -

2.3.4 Platform independence

Java supports platform independence primarily through its Java Virtual Machine. No
matter where a Java program runs, it needs only interact with the Java Virtual Machine
and it accesses the underlying host resources through the APL Because the JVM and Java
API are implemented specitically for each particular host platform, Java programs can be

platform independent.

When a C++ program is compiled and linked, it generates the executable binary that is
specific to a particular target hardware platform and operating system because it contains
machine language specific to the target processor. In contrast. a Java program is

translated into bytecodes that can run on any Java Virtual Machine.

[f a system administrator wants to upgrade a distributed application in the network. some
new classes have to be prepared by the administrator. Suppose these new classes depend
on the administrator’s platform and can not run on other network nodes. it is impossible to
upgrade the application remotely by relying on those new classes. Therefore, platform

independence is a necessary property for our hot-swapping technique.

In addition, Java can be implemented on a wide range of hosts with varying levels of
resources. from embedded devices to mainframe computers. Taking advantage of Java's
scalability, our hot-swapping technique has the potential to be applied on various

applications.

2.3.5 Security

Networks represent a convenient way to transmit viruses and other forms ot malicious
code. An application or system can be more vulnerable while it opens the door for being
upgraded on the fly. Some hostile code may invade the application by mimicking the
identity of a new version through the channel that is preserved for maintenance. Thus

hot-swapping technique must provide security services to protect the system.

Java’s security mode!l. which is one of the key architectural features that makes it an
appropriate technology for networked environments. is focused on protecting end users
from hostile programs downloaded across a network from un-trusted sources. The
following elements make up Javas security model: the Java verifier. the

SecurityManager, the class loader. and the language specification.

-30-

2.3.5.1 The Java Verifier

Every time a class is loaded, it must first go through a verification process. The main role
of this verification process is to ensure that each bytecode in the class does not violate the

specifications of the Java VM. [t consists of the following four stages:

¢ Verifying the structure of class files.

The verifier is concerned with verifying the structure of the class file. All class
files share a common structure; for example, they must always begin with what is
called the magic number, whose value is OxXCAFEBABE. Following the magic
number. are four bytes representing the minor and major versions of the compiler.
At this stage. the verifier also checks that the constant pool is not corrupted (the
constant pool is where the class file's strings and numbers are stored). [n addition,

the verifier makes sure that there are no added bytes at the end of the class file.

¢ Performing system-level verifications.

This involves verifying the validity of all references to the constant pool. and

ensuring that classes are subclassed properly.

¢ Validation bytecodes.

-31 -

This is the most significant and complex stage in the entire verification process.
Validating a bytecode means checking that its type is valid, and that its arguments
have the appropriate number and type. The verifier also checks that method calls
are passed the correct type and number of arguments, and that each external

function returns the proper type.

¢ Performing run-time type and access checks.

Finally, the verifier ensures that all variables are initialized correctly.

2.3.5.2 The Security Manager

In the java.lang package, there is a SecurityManager class which is used to define the
security policy that specifies certain security restrictions on Java applications. The

security policy’s main role is to determine access rights.

Every Java application loaded into the JVM exists in its own namespace. An application’s
namespace defines its access boundary. This means that the application cannot access any
resources beyond its namespace. Before an application can access a system resource,
such as a local or networked file, the SecurityManager object verifies that the resource is
inside the application’s namespace. If it is, the SecurityManager object grants the access

right; otherwise, it prevents it.

The SecurityManager class contains many methods used to check whether a particular
operation is permitted. For example, the checkRead() and checkWrite() methods check
whether the method caller has the right to perform a read or write operation, respectively,
to a specified file. The default implementation of all of SecurityManager’s methods,
assume that the operation is not permitted, and they prevent the operation from taking
place by throwing a SecurityException. Many of the methods in the JDK use the
SecurityManager before performing dangerous operations. In order to customize a

security policy. one needs to subclass SecurityMuanager and overrides its check functions.

2.3.5.3 The class loader

The class loader works alongside the security manager to monitor the security of Java

applications. The main roles of the class loader are as following:

Loads class files into the Virtual Machine

[dentifies the package to which a loaded class belongs

Locates and loads any classes referenced by the currently loaded class

Verifies attempts by the loaded class to access classes outside its package

Keeps track of the sources loaded classes, and makes sure that classes are

loaded from valid sources

-33 -

¢ Provides certain information about loaded classes to the security man-

ager

Each class is associated with a class loader object. Before a class can be loaded into a
certain package. its class loader must check which package the class belongs to. Once
loaded. the class loader resolves the class, which means that it loads every other class that
the class references. Resolving a class involves: verifying that the class has the right to
access the classes it references, and ensuring that referenced classes are not loaded from

invalid sources.

2.3.5.4 Java Language’s Security Feature

There are a number of things that make Java's language specification secure, including:

Array references are always checked at run-time

There is no way of directly manipulating pointers

Memory leaks are prevented by having the JVM perform automatic

memory management

e Casts are not allowed to violate any casting rules

-34 -

2.3.6 Network mobility

One of the fundamental reasons that make Java a useful tool for network environment is
because it enables the network mobility of software. Java's architectural support for

plattorm independence and security makes network mobility practical.

The Java class file plays a critical role in support for network mobility. Class files were
designed to be compact so that they can be transmitted across networks quickly. Also.
because Java programs are dynamically linked and dynamically extensible, class files can

be downloaded and instantiated as needed.

Network mobility of software enables installation and upgrading to be automatic.
Network-delivered software does not require discrete version numbers for its end users.
These end users need not decide whether to upgrade nor take any special action to
upgrade. Therefore, the job of upgrading distributed software can be significantly

simplified.
2.3.7 Run time introspection
Java’s retlection service provides a powerful capability of run time introspection, such as:

¢ Determine the class of an object.

-35-

¢ Get information about a class’s modifiers, fields. methods, constructors, and

superclasses.

¢ Find out what constants and method declarations belong to an interface.

¢ Create an instance of a class whose name is not known until runtime.

¢ Get and set the value of an object’s field, even if the field name is unknown to your

program until runtime.

¢ [nvoke a method on an object. even if the method is not known until runtime.

¢ Create a new array. whose size and component type are not known until runtime. and

then modify the array’s components.

2.3.8 Java’'s Drawback

Although the Java platform provides much support for software hot-swapping technique,

it also includes some drawbacks.

The main disadvantage of Java is slow execution speed. For example, by interpreting
bytecodes, it is 10 to 30 times slower than native execution. Just-in-time compiling
bytecodes can be 7 to 10 times faster than interpreting but still not quite as fast as native

execution [9].

-36 -

As it is mentioned in section 2.3.1, Java has some advantages on memory management
which can tree Java developer from worrying about memory management. However, it is
also a trade off, because a developer can no longer get entire state of the program which

is not good for managing the state of an S-application.

Good news is that some improvement in the execution speed of fava programs can be
expected. Sun Microsystems is currently working on a technology called "hot-spot
compiling.” which is claimed to yield Java programs that run as fast as natively compiled

C++.

2.3.9 Alternatives

Java is by no means the only vehicle for software hot-swapping. There are some other
programming languages that can support upgrading software on the fly. Actually,

Smalltalk has some nice features that are suitable tor upgrading software on the fly.

[n Smalltalk. even a class can be treated as an object. So one can write a new class in a
text file and use the operating system to compile it, instantiate it and run it at runtime.
Smalltalk also allows programmers to change any functions implementation in the
program at runtime. Another nice teature that Smalltalk can provide is object mutation. [t
allows one to simply assign the new object to the old one and they are automatically

mutated. As a result, all the clients of the old object switch to the new one transparently.

-37-

However, Java is much more promising than Smalltalk, which is the main reason that we

deploy this technique using Java.

2.4 Potential solutions for software hot-swapping
technique

No matter how much support that existing technologies can provide, none of them have
already met all the requirements for software hot-swapping. However, potential solutions

may be found at difterent levels.
2.4.1 Solutions at Operating System Level

The advantage of developing a software hot-swapping technique at the OS level is that it
directly provides a plateform to support upgrading software on the fly. Moreover, an
operating system can obtain the state of the system easily. Hence it is not very difficult to

maintain the integrity of the system during the process of software maintenance.

However, it is quit complicated to develop a software hot-swapping technique at the
operating system level. Moreover, the popularity of the software hot-swapping technique
will be completely constrained by the new operating system. For example, a new
operating system named Kea has been developed to provide a means through which
kernel services can be reconfigured [11]. However, Kea is mainly target on upgrading

kernel services.

.38 -

Actually some operating system, such as Multics (Multiplexed Information and
Computing Service) [12], has a quite flexible structure that can be adapted to support
software hot-swapping. For example. a complete memory address of a Multics pointer
includes segment number, word offset, byte offset, and a ring validation number;
therefore. its memory address can be modified through manipulating the offset value of a

pointer at run time.

Although Multics is almost out of usage nowadays because of its relatively slow speed.
its flexible structure indicates a potential to support software upgrade on the fly.
Similarly. the Java Virtual Machine also has such kind of flexible structure in updating

object references for its garbage collection.

As we know, the Java Virtual Machine has to move objects on its heap for the purpose of
heap defragmentation during the process of garbage collection. As it is illustrated in Fig.
2.4, one approach to implement this algorithm is to add a level of indirection to object
references. That is, instead of referring directly to objects on the heap, object references
refer to a table of object handles (named handle pool). When an object is moved on the
heap, only the object handle is updated with the new location. Similarly, we can also
upgrade an object by redirecting its object handle to a new object, that is, by
manipulating the handle in the handle pool, one can redirect object reference to point to

new class data in method area and new instance data on the heap.

-39-

an object reference
[ptr into handle pool

the handle pool

the object pool

ptr into object pook—8 instance data

Ml ptr to class data

\
\
\

\
\ ‘ instance data

§ nstance data

the heap

)

X\

class class
dita
data

the method area

Fig. 2.4: Swap an object inside a Java Virtual Machine

However, Java does not provide an interface to let us access its object handle table and a
developer could not access system state information as well. Moreover, updating object

reference is just one issue of software upgrading. The tough issue is how to preserve the

state of the application.

2.4.2 Solutions at system level

From the system level, a technique called dynamic system configuration [13] can be used

to modify and extend a distributed system while it is in operation. In fact, it is essentially

a mechanism of modifying the structure of a distributed system.

essentially relying on redundant devices for system maintenance.

-40 -

This approach is

2.4.3 Solutions at application level

Software maintenance is an issue at the application level and many changes are specific

to the application, so this problem can be solved at the application level.

The software hot-swapping technique is an approach to provide the solution for software
maintenance at the application level. It should meet the ten requirements listed in section

2.1 and make it possible to upgrade the application at run time.

Composite S-application
in basic modules

local method call

Composite S-application

Composite S-application in CORBA objects

in Jini components

remote method

. . method invocation|
invocation

through ORB

Fig. 2.5: Different proposals for composing S-application software

-4] -

The infrastructure of Jini supports "plug-and-play” technique [14] and it has the potential
to be used to upgrade software on the fly. A program can be regarded as a federation [15,
16, 17] of all its modules. and every module can be an add-in or subtract-out at run time.
Modules can find each other through lookup services and their relationship can be very
flexible. However, by comparing Fig. 2.5a and Fig. 2.5b, one can tind that components in
S-application have to communicate with each other through RMI instead of local method
call it adopting Jini's infrastructure for S-application configuration. The performance

trade off is very obvious.

A CORBA business object [18, 19. 20] is declared to be a plug-and-play component and
its interoperability makes it possible to plug new applications into a shared model while
preserving the integrity and security of the shared model. So this technology can be used
for upgrading software at run time. However. CORBA business objects are normally
complex and they communicate with each other through an ORB. From Fig. 2.5¢, one
can find that the performance of the application is sacrificed during the process of

marshalling and un-marshalling.

_42-

2.4.4 The research assumption

Based on the preceeding analysis, our software hot-swapping technique is an approach to
tackling software maintenance at the application level. For performance reasons, we will
not adapt Jini or CORBA busincss object infrastructure as our softwarc hot-swapping
infrastructure. [n another words. a new software hot-swapping architecture has to be built

in order to achieve the goal of maintaining software at run time.

To simplity the problem., it is assumed that the software hot-swapping architecture is built
on the Java environment to take advantage of Javas features like network mobility,
security, platform independence. dynamic linking and dynamic extension., multi-

threading, reflection, etc.

As it was mentioned in section 2.3.9, the hot-swapping technique does not totally depend
on Java technology, but rather, takes advantage ot Java's support and thus simplifies our
problems. [n this way, we can focus on these unresolved problems and make some

substantial contributions.

It is also assumed that the application to employ the hot-swapping technique is
configured into some swappable modules, which are called S-modules, and only those

swappable modules can be automatically swapped.

-43 -

In the hot-swapping architecture, a swap manager can take control of every transaction.
There is a swuap manager for each application and all the clients access the application

through its swap manager.

2.5 Conclusion

This Chapter defines the requirements for swappable software and its underlying
principles. [t is shown that in order to achieve software modularity, dynamic
extensibility. code mobility. security. Java language and technology combined with
object oriented paradigm establish the key foundation to realize software hot-swapping

architecture which will be described in detail in the following chapters.

CHAPTER 3.0 SOFTWARE HOT-
SWAPPING ARCHITECTURE

This chapter provides an in-depth description of the software hot-swapping architecture
and its major components. the S-module, the Swap manager. the S-proxy. system

administrator and their roles and their comprehensive services.

3.1 An overview

The environment of the software hot-swapping architecture is a typical distributed network
environment. [n this environment, an application can either act as a client to initiate service
requests. or i server o receive service requests from its clients and provide service. Fig. 3.1
illustrates a typical client-server application. Normally a server application has to provide
services for many clients. so it has to be available even when it needs to be upgraded. So in

this thesis. we are going to focus on applying the hot-swapping technique on server

application.
NC
Application r
- --—p=
NC: network
component

Fig. 3.1: A server application in a distributed environment

- 45 -

The software hot-swapping architecture consists of several fundamental elements: a
specification for application configuration, a swap manager, and a system administrator.

Fig. 3.2 is the overview of this architecture.

Server Li m ning New S-
P ste
Appllcatlon = ! Moaodule
S-module? Security
Lifecycele
S-modulel
Storage
] Naming

Time Control

Administrator

State Monitor

remote access

Transaction
===
non- | logging
- (
al aceecs - . -
local access S-module —
— L] S-proxy o”

!_L-_____.T'

Fig. 3.2: The software hot-swapping architecture

Fig. 3.2 shows that a server application consists of multiple swappable and non-swappable
modules, serving clients in network. Notice that non-Swappable module has a direct
interface to those clients while Swappable modules have to go through S-proxy in order to

interact with the clients.

- 46 -

Detailed descriptions of every component in Fig. 3.2 will be presented in the next several
sections. As was discussed in last chapter, an application has to be configured into
swappable modules so that it can be updated by modifying the module instead of replacing
the whole application all at once. The application can be composed of multiple swappable
modules (called S-modules) and non-swappable modules. Only S-modules can be swapped
at runtime. [n order to be able to swap an S-module on the tly, a swap manager is designed
to manage its activities. Every S-module has an S-proxy to act as its inter-module
communication middleman which has been discussed in section 2.1.3. The only way for the
outside world to access an S-module is through its S-proxy. There is only one swap
manager for an application. As it was illustrated in Fig. 3.2, the swap manager has no
control of those non-S-modules. Thus from the swap manager point of view. these non-S-

modules make no difference with clients of the application.

When an application needs to be upgraded, a system administrator will prepare some new
S-modules and send them to the swap manager. The swap manager will instantiate these S-

modules after a security check and then tries to upgrade the application automatically.

3.2 The specification of S-modules

As was discussed in the previous chapter, an application has to be configured into
swappable modules so it can be replaced by unit of module instead of by unit of the whole

program. A swappable module is hereby called an S-module.

-47 -

An S-module, an entity that has certain attributes and behaviors, can provide certain
application services at runtime, and cooperate with the Swap Manager to achieve the goal

of "hot-swap".

3.2.1 The characteristics and interface of an S-module

3.2.1.1 Encapsulation and isolation

Encapsulation and isolation are key features of a S-module. With these characteristics. any
software module can be implemented as an S-module. Normally a non-S-module can not

be designed as an S-module mainly because it can not satisty these characteristics.

Encapsulation means that all the information passing into or coming out of the S-module
must go through its interface. This interface. hereby called the service interface, is to
provide services for clients of the S-module. Passing information through its interface may
hide a change inside an S-module from its outside world. Therefore, all the data in an S-
module should be private while all the services that an S-module can provide are included

in its service interface.

[solation means that all the statements inside an S-module can not directly refer to other S-
modules. The only way an S-module can communicate with other S-modules is through the
swap manager. In another words. an S-module should not give its handle to anyone else

except its swap manager. In this way, the swap manager can truly control those S-modules.

-48 -

[solation also means that an S-module can be pre-compiled and dynamically linked with
the rest of the application at run time. Conversely, a non-S-module generally needs re-

compilation, re-linking and restarting when it is being upgraded.

An S-module can be classified into two categories: namely. passive S-module and active
S-module. A passive S-module will not initialize any operation on its outside world unless
it has external stimuli: however. an active S-module may initialize operations on its outside
world without any external stimuli. According to the encapsulation characteristic. a passive
S-module can be controlled through its interfaces that are provided to its outside world,
while an activate S-module has to implement an extra control method so that its activities

that it initializes on its outside world can be controlled as well.

3.2.1.2 [dentity

An S-module must have a unique identity by which the Swap Manager can identify it.
However, it is not easy to achieve this unique identity in a distributed environment. An S-

module is required to register with its swap manager when it is instantiated.

A new S-module may have the same name as the stale one. but their version must be

different. So version is a very important index to distinguish different S-modules.

Actually version control is very important for software maintenance because swapping an

S-module with a wrong version into the system may corrupt the application. An S-module

-49 -

must have both a version attribute as well as an interface to access this version attribute.

Interface VersionControllnterface{
public synchronized int getVersion():

public synchronized void setVersion(int newVersion).

3.2.1.3 State

The state of an S-module summarizes its attribute values and its execution status. [t is very
important because it indicates the integrity of the application during the process of hot-
swapping. If the swap transaction were committed. an S-module with a newer version
should provide service based on the state of the stale version. If the swap transaction were
aborted. the stale S-module would continue its service based on its previous state. The
execution status of an S-module is of prime importance to the swap transaction: therefore,

it will be further described in the next chapter.

An S-module must have the functionality to extract and retrieve its state. A new S-module
may have differing attributes from the stale one, so program designers have to implement
the state mapping rules at design time. However, these rules may not work perfectly at run
time, the S-module should be able to handle exceptions like stateNotMatchException. An
S-module also may not be able to provide its state all the time. For example, it is in a critical

activity and can not provide its state, then an S-module of new version make catch

-50 -

cannotGetStateException.

Interface StateControllnterface{
public StateObject getState() throw cannotGetStateException:

public void sctState(StatcObject o) throw stateNotMatchException:

3.2.1.4 Administration interface

S-modules are managed by a swap manager that can control the activities of those S-
modules and manage the transaction of swapping S-modules. Therefore, an S-module has

to provide administration interface for its swap manager to control.

An S-module may not allow to be swapped in any arbitrary state, especially when it is
changing the state of itself/system. Theretore. the swap manager may have to consult with
the S-module betore it starts the transaction of hot-swapping. On the other hand, an S-

module should have the opportunity to decide whether or not it is ready to be swapped.

The swap manager also has to manage the S-module while it is swapped out, so that it can

give up the occupied resources and wait for garbage collection. This kind of administration

-51 -

interface may look like this:

Interface AdministrationInterface {

public synchronized boolean isReady():

public void cleanup():

3.2.1.5 Persistence

Persistence is necessary to maintain the state of an S-module. Persistence along with
transactional-based updates provides system recoverability. To ensure the consistency of
the service application, in which the S-module is involved, the system resources held by the
stale S-module. such as opened files. in-service communication channels. etc., should be

able to released to or transterred to the new S-module.

It is not necessary to configure all the modules in an application into S-modules.
Sometimes, it is impossible to do so because some modules in the application do not satisfy
those characteristics that described in section 3.2.1.1. On the other hand. the reason why an
application is configured into S-module format is to prepare for change. Therefore, the
parts in the application that are likely to be changed in the future ought to be configured
into S-module format. Although a programmer can not completely foresee which part of

the program will be changed later, there are still some rules to follow.

-52 -

3.2.2 Prepare for S-module

An S-module needs to be prepared for change. However. accommodating change is one of
the most challenging aspects of good program design [10]. The goal is to isolate unstable

areas so that the effect of a change will be limited to S-modules. There are three steps:

1. Identity items that seem likely to change.

2. Separate items that are likely to change. Compartmentalize each volatile component
identitied in step one into its own module. or into a module with other volatile

components that are likely to change at the same time.

3. Isolate items that seem likely to change. Design the inter-module interfuces to be
insensitive to the potential changes. Design the interfaces so that changes are limited to
the inside of the module and the outside remains unatfected. Any other S-modules using
the changed module should be unaware that the change has occurred. The S-module’s

interface should protect its secrets.

There are some areas that are likely to change, so they should be take into consideration

when a program is to be configured into S-modules.

¢ Hardware dependencies

This includes interfaces with disks, tapes, communications ports, and so on.

-53-

¢ Input and output

Input/output is relatively volatile area. If the application creates its own data files. the file

format will probably change as the application becomes more sophisticated.

¢ Nonstandard language features

Using nonstandard extensions to a programming language is prone to change when the

program is applied to a different environment.

¢ Difficult design and implementation

[t is a good idex to hide difficult design and implementation details because they might be
poorly done and require redesign. Compartmentalizing and minimizing the impact of these

bad design or implementation choice might have on the rest of the system.

¢ Status variables

Status variables indicate the state of a program and tend to be changed more frequently than

other data.

¢ Business rules

Business rules are the regulations, policies, and procedures encoded into a computer

system. Such rules tend to be the source of frequent changes. For example, security

-54-

protocol needs to be updated periodically.

¢ Anticipating changes

When thinking about potential changes to a system. the effect or scope of the change should
be inversely proportional to the chance that the change will occur. If a change is likely,

make sure that the system can accommodate it easily.

3.2.3 Negative effects of 0O

Although object-oriented technology promotes maintenance, it also has some negative
effects on software maintenance. There are two obstacles that are specific to the

maintenance of object-oriented software.

® Inheritance

A maintenance programmer has to study the complete inheritance hierarchy to understand
the derived classes. The class hierarchy may not be laid out in a linear fashion. Instead, it

is generally spread over the entire product.

The advantage of inheritance is that new leaves can be added to the inheritance tree without
alerting any other class in the tree. However, if an interior node of tree is changed in any
way, then this change is propagated to all its descendants. Thus, although inheritance can

have a major positive influence on software development, it also has a negative impact on

-55-

software maintenance.
¢ Polymorphism and dynamic binding

Polymorphism and dynamic binding are very powertul aspects of object-oriented product.
They decouple the caller and callee and therefore relax the type system of the programming
language. However, they can also have a deleterious impact on maintenance by forcing the
maintenance programmer to investigate a wide variety of possible bindings that might
occur at run time. and hence determine which of a number of different methods could be

invoked at the point in the code.

3.3 S-proxy

No matter how isolated an S-module is, it is a logic component in a program and must be
unified within the application. [n another words, every piece of code in a program is linked
together according to certain logic relationships. Therefore, an S-module has to have

relationships with other parts of the program and perhaps with clients of the application.

However, an S-module should not distribute its handle, otherwise it will run into referential

problems. The following example explains the problem.

-56 -

S-module-B

)
@ ~
~

b S-module-Bl

Fig. 3.3: Referential update

In Fig. 3.3. Client-A requests S-module-B tor service. If we want to use S-module-B1 to
replace the S-module-B, Client-A has to change the reference from S-module-B to S-

module-B 1. This means that Client-A must know of the change.

- S-module-B

S-module-B!

Fig. 3.4: The problem of reference propagating

However, as depicted in Fig. 3.4, if Client-A has passed S-module-B’s handle to Client-C,
then Client-C will retain the reference to S-module-B even if Client-A has changed the
reference to S-module-B1, unless client-A informs client-B about the change. Thus, if we
want to swap S-module-B with S-module-B1, we have to let all those who have S-module-

B’s handle switch to S-module-B1. To do so, we have the following problems:

-57-

¢ The replacement of an S-module is not transparent to its clients, as the

process requires the clients’ cooperation.

¢ In some cases, an S-module to be swapped may have no idea about who
has its handle, and thus it is Jdifficult for the S-module to notify its clients

of the change.

3.3.1 S-proxy for referential problem

An approach to solve this problem is by using an S-proxy as the delegate of the S-module.
An S-proxy can hide the real handle of the S-module while those clients only get the handle
of the S-proxy. When an S-module is swapped, only the S-proxy switches the handle to the

new S-module while the clients remain their relationship with the S-proxy.

- ead

S-module-B

S-module-B!

Fig. 3.5: Proxy approach for referential problem

Fig. 3.5 illustrates the proxy approach. An S-proxy is used to solve the referential problem.
The S-proxy can hide the S-module-B’s actual handle from its clients and deal with those

clients on behalf of the S-module-B. When the S-module-B is updated, the change is

- 58 -

transparent to those clients. All the service requests to the S-module-B are switched to the

S-module-B 1 automatically through the S-proxy.

Although the proxy approach is not the only solution for the referential problem, it suits the
hot-swapping architecture very well. Some other solutions are mentioned in [24], such as
the observer pattern approach and the mediator pattern approach. but they are not as

practical as the proxy approach.

Actually, the proxy approach is very popular in many distributed object technology such as
RMI. CORBA, Jini and Voyager. However, our S-proxy does not need the process of
marshalling and un-marshalling. Hence, even it has introduced some overhead into the
application, it is designed to not have too many side effects on the performance of the

application. A quantitative performance measurement could be done in further work.

The name S-proxy comes trom the proxy pattern [23]. because it has the same service
interface as an S-module. However, an S-proxy not only acts as a delegate of its S-module
but also plays an important role in the hot-swap transaction. Its service for a hot-swap

transaction will be presented in the next chapter.

3.3.2 Functional modification and extension

The drawback of the S-proxy approach is that the service interface of an S-proxy is the

same as the stale S-module that it originally represented, and the S-proxy, which is not

-59 -

swappable, can not be upgraded at run time. This drawback means that a new S-module can
not have an interface different from the stale one. For example, Fig. 3.6 shows that a new
S-module comes into service by replacing the stale S-module. The new S-module has a
newMethod interface that does not exist in the stale S-module as well as in its S-proxy.
Because the outside world can only access the new-S-module through the S-proxy, then
there is no way that the newMethod in the new S-module can be invoked. Obviously. this
kind of limitation would make the so-called software upgrading impractical if left

unresolved.

Stale S-module

S-proxy Stale intertace

Slalc intertace (/
Cent_ ~
\

\ new S-module

Stale interface

newMethod

Fig. 3.6: Functional extension problem

Although an S-proxy can not foresee the new functionality of a new S-module, it can
prepare for the change. By deploying Java reflection technique, an S-proxy can provide a

newService interface to adapt to the case when a new S-module has a new method.

In Fig. 3.7, a new client that knows the newMethod of the new S-module can calil the

-60 -

newService function of the S-proxy with the parameter of the newMethod’s name and

parameters. Then, the S-proxy can invoke the newMethod of the new S-module.

Stale S-module

S-proxy Stale interface

Stale interfuce <

@ - e am um EwScrvlcc \\
g \ new S-module
™

~
“~ I Stale interface
new Method

Intertace NewServicelntertace
public Object newService(String methodName, Object[] args):

}

Fig. 3.7: NewService interface for an S-proxy

Unfortunately. the above solution can only support incremental functional modification
and extension. [n another words, it can not support decremental functional modification.
This means that a new S-module has to keep all the interfaces that its corresponding stale
S-module has provided. Otherwise it will violate Java’s type system. However, it is not
difficult for a new S-module to continually support those interfaces that the stale S-module

has already provided.

-61 -

3.4 Swap manager and its services

The swap manager is the core of the hot-swapping architecture. It acts as a broker and
manager among those S-modules and their clients, new S-modules and those stale ones. S-
modules of an application including new and stale versions together with their S-proxies

are managed by a swap manager to achieve the goal of software hot-swapping.

Although an S-proxy is tightly coupled with its corresponding S-module, from an
architectural point of view, it actually belongs to the swap manager. According to the
encapsulation characteristic of an S-module, the outside world must have its handle to
access it. However. according to its isolation characteristic, an S-module can only give its
handle to its S-proxy, so that the swap manager can take control of it. An S-proxy can

coordinate this complicated relationship very well.
3.4.1 The services of swap manager
A swap manager provides the following services:
¢ Listening service

The Swap Manager has a listening service which is always listening on a specific port to

receive a message sent by the system administrator.

¢ Security service

As was described in chapter 2. security is a very important issue for software hot-swapping
technique. When a swap manager receives message from a system administrator, it has to

make sure the following issues:

The confidentiality of data

Authentication of the data sender

[ntegrity of the data sent

» Nonrepudiation; a sender cannot deny having sent a particular message.

Java Security AP provides many ways of verifying that messages that are sent by the
administrator and were not modified in transit. Normally, digital signatures and certificates

can be used to ensure the sccurity of those messages.

A digital signature is a string of bits that is computed from some data and the private key
of an entity. A system administrator can generate a digital signature for its message by
using the jarsigner tool or API methods, then send to the swap manager with the message
and the signature together with the public key, which is corresponding to the private key
used to generate the signature. Therefore, the swap manager can use the public key to verify

the authenticity of the signature and the integrity of the message.

If the swap manager needs to ensure that the public key itself is authentic before reliably

-63 -

using it to check the signature’s authenticity, the system administrator can supply a

certificate containing the public key rather than just the public key itself.

As security is a big issue, more concrete research and design are needed in future work.

¢ Lifecycle service

The swap manager is able to instantiate new S-modules after authentication and other
security checks. [t is also able to remove garbage code and free resources. Java's class

loader and garbage collection mechanism can support this service.

The lifecycle service also controls the state transter of S-proxies and S-modules in the swap
transaction. Moreover, it also provides the interface to allow them to join or leave the

participant list of the swap manager.

¢ Storage service

The swap manager is able to store the messages and new S-modules that it has instantiated.

¢ Naming service

A swap manager provides a naming service so that every S-proxy can be found according

to its name.

¢ State Monitor

- 64 -

As was analyzed in the previous chapter, it is very important to maintain the integrity of the
application. The swap manager has to monitor the state of every S-module so that it can

find the checkpoint to do the hot-swap.

¢ Time control

The main reason why an application wants to apply the hot-swapping technique is that the
system expects zero or close-to-zero down time. Therefore, the swap manager should
control how long it allows the hot-swapping transaction to interrupt the application service.

A system administrator can assign the time constraint through message.

L Logging service

A swap manager is able to provide information about its activities so that a system

administrator is able to know the upgrade record of the application.

¢ Transaction service

The transaction service is the main service provided by the swap manager. It is also the
most important and the most complicated part of the software hot-swapping technique. The
transaction service is important because it decides whether the hot-swapping transaction
succeeds or not. On the other hand, it is complicated because it has to meet all the

requirements listed in chapter 2 to make the hot-swapping transaction succeed. The

-6S -

transaction service has to synchronize the service transaction of the application with the
hot-swapping transaction, coordinate the activities between those stale S-modules and the
new ones. The swap manager is also responsible for ensuring that the swap transaction is

robust and efficient as well as limited by the time constraints.

3.5 Conclusions

This chapter provided a description of the overview of the software hot-swapping
architecture and its major components. The next chapter will tocus on describing how the
swap manager provides its transaction service, with which the tunctionality of the S-

module, the swap manager and the S-proxy will be future described.

- 66 -

CHAPTER 4.0 THE SOFTWARE
HOT-SWAPPING TRANSACTION

The scheme under which the swap transactions are handled during the process of hot-
swapping is the key to maintaining service continuity. This chapter gives a detailed
description of the transaction in our hot-swapping architecture. [t starts with an overview
of the concept of a transaction. Then it analyses the characteristics of the transaction in
our hot-swapping architecture. Because the main responsibility of a hot swap transaction
is to maintain the integrity of the application. the state of the S-module is analysed and a
checkpoint for the swap transaction is suggested. Consequently. the state machine of
every component in the hot-swapping architecture is described. Finally. an efficient two-
phase commit hot-swapping transaction scheme is presented to ensure the system

performance during transactions.

4.1 An overview of transaction concept

4.1.1 The notation and the ACID properties

A transaction can be defined as a basic unit of work or the execution of a program that
performs some administrative functions through the use of one or more shared system
resources, and results in a very definite, but reversible change in some part of system

properties or state.

-67 -

A transaction is classified by its properties atomicity., consistency, isolation, and
durability (ACID) [25]. These properties characterize a transaction in a number of ways

as described below.

Atomicity means that it the process of a transaction is unexpectedly interrupted by

failure, all preceding operations that comprised the transaction will be rolled back.

Consistency means that the transaction will always produce the same consistent result.

That is, it preserves invariance.

Isolation means that a transaction’s internal transient states are invisible to other
transactions and parts of the system. That is. a transaction is like a single discrete unit of
work no matter how complicated the internal states of that transaction are. Normally, a

transaction may appear to execute serially even though it is performed concurrently.

Durability of a transaction means that its effects are persistent, reversible (if so desired).

and never lost.

4.1.2 Approaches for the state consistency of an object

There are two basic approaches to guarantee the state consistency of an object during a

transaction[25]:

Logging: Persistent object values are updated in place and all changes are recorded in a

-68 -

log. This approach is based on a fundamental assumption that it is possible to undo an

invocation on an object. It is useful when a crash occurs part way during a transaction.

Shadowing: The update of any persistent object values are deffered. The new and stale
values of each object comprising a transaction are maintained in a persistent store and a

switch is made from stale to new values when the transaction is committed.

Any transaction in our hot-swapping system, which should have ACID properties, is a
composite operation on S-modules invoked by clients. To keep a consistent state of those
S-modules. some approaches, like logging and shadowing. need to be applied depending
on the nature of transaction. However, it is not practical to require all the applications,
which apply the hot-swapping technique, to keep records for every step of a transaction
and all the attributes of those involving S-modules. [n the next context, the features of the

transaction in our hot-swap architecture will be analysed.

4.2 The transaction in the hot-swapping
architecture

Generally, there are two types of transactions in our hot-swap architecture. One is
designated as S-application transaction which is driven by client service requests; the
other is denoted as swap transaction which is a two-phase scheme and invoked by swap

manager in order to swap certain S-module.

-69 -

4.2.1 The S-application transaction

The operations performed by one or multiple S-modules within a S-application in order
to provide services to a client, in response to the clients request. defines the S-application
transaction. A S-application transaction is initiated by the request from the client, and it

ends when the service is completed.

In a distributed computing environment, it is very necessary for an S-application. an
application to which the hot-swapping technique is applied. to support multiple clients
concurrently. Therefore, the hot-swapping technique is designed to support concurrent S-
application. [t should be noted that supporting concurrency is no trivial task. as an S-

module can run on multiple threads and its state transition can be very complicated.

4.2.2 The swap transaction in the hot-swap architecture

The swap transaction is a transaction invoked by a swap manager who has received a
request from a system administrator to swap some stale S-modules out of the application
and make new ones operational. Very likely, several S-modules in an S-application have
to be updated together because they have certain relationship. To ensure the integrity of
the S-application, the swap transaction can not be partially committed. In another words,
it has to be a two-phase commit transaction which means either all participants can

commit the transaction or none of them can do so.

-10 -

P ‘\ O p " Q stale S-module
\ P \~) <
(\ \ new S-module
- '
S-proxy

Swap Manager

Fig. 4.1: A swap transaction

As it shows in Fig. 4.1. one unit of participants of swap transaction includes a new
version of S-module, a stale version of S-module and its S-proxy. If there are multiple S-

modules to be swapped. then multiple units ot participants will join the swap transaction.

It must be pointed out that the swap transaction is different from transaction fault
recovery. When a swap transaction starts, it does not mean that there is anything wrong
with the S-application transaction. Hence the swap manager should not just abort the
existing S-application transaction. On the contrary, any existing S-application

transactions should be maintained.

In order to reduce the risk of crashing any S-application and to make the swap transaction
robust and simple, the swap manager does not support concurrent swap transactions.

Thus, the swap manager would block any new swap transaction until the swap transaction

-1 -

in processing is completed.

As discussed in the previous chapter, the most difficult issue is how to keep the integrity

of an S-application. The next section will target on this issue.

4.2.3 The state of an S-module and its checkpoint

Only S-modules will participate in swap transactions. The swap transaction keeps all the

S-modules intended for swapping in a consistent state.

As was discussed in the previous chapter, a swap manager has to synchronize the S-
application transaction and the swap transaction. [f an S-module is involved in these two
types of transaction simultaneously. the swap manager has no way to guarantee its
consistency, because the swap transaction requires the S-module at a stable state while
the S-upplication transaction may keep changing the state of that S-module. Therefore, it
is the swap manager’s responsibility to make sure that an S-module has been stopped

involving into any S-application transactions before it starts to join the swap transaction.

However, according to the ACID properties of a transaction, the S-application transaction
in an S-module should not stop at an arbitrary point. On the contrary, it has to stop at a
swap checkpoint so that a stale S-module can reach a persistent state at which the new S-

module can continue to provide service.

4.2.3.1 The state of an S-module

As was mentioned in the last chapter, the state of an S-module summarizes its attribute
values and its execution status. These attributes can be classified into two categories,
namely static attributes and dynamic attributes. Static attributes will not change in any S-
module operation. However, a dynamic attribute may change upon some S-module
operations. In another words, the dynamic attributes may change whenever the S-module

is doing an S-application transaction.

The execution status of an S-module can be classified into two categories, namely busy
state and idle state. The idle state means that an S-module is quiescent and is not
conducting any operations. Whereas the busy state means an S-module is actually doing
some operations. According to its passive characteristic, an S-module is in its busy state
only when it is under external stimulus. Obviously, the dynamic attributes of an S-
module may change at any time when it is in a busy state. while its attributes will not

change when the S-module is idle.

For an active S-module, its busy state is more complicated than a passive S-module,
because it may initialize operations on its outside world and execute operations under
external stimuli at the same time. To transit from busy state to idle state, an active S-
module actually has to stop initializing any operations on its outside world first and then

try to complete its operations that initialized by external stimuli. Logically, it has to

-73 -

follow the reverse procedure to resume an active S-module .

4.2.3.2 The checkpoint for an swap transaction

In a distributed environment, an S-application may provide service concurrently. An S-
module is therefore playing different roles on different threads at the same time and its
state can be very complicated. Moreover. a new S-module may have a different
implementation with the stale one, so there is no way for the new S-module to find a

persistent state and map it with the stale S-module which is at busy state.

Theretfore, an ideal time for a new S-module to get a persistent state from the stale S-
module is when the stale S-module is in its idle state and it agrees to be swapped. Then
the new S-module need not worry about how to map with any change of those dynamic
attributes as well as various execution states. In another words. the checkpoint for the
purpose of swapping an S-module, called S-checkpoint, is at the point when the S-

module is in its idle state.

The idle state also meets the requirement of synchronizing the S-application transaction
and the swap transactions, that is, these two transactions do not coexist in the same S-
module. However, for those S-modules which do not join the swap transaction, they can
still continue with their S-application transactions and provide services. [n this way, the

interruption for the application is limited within the range of those S-modules who join

-74 -

the swap transaction.

As was mentioned in section 3.2.1.4, an S-module must have an AministrationInterface
so that its swap manager can consult with it to find out whether or not the S-module
agrees to be swapped. In this way, even when an S-module is at its idle state. the S-
application still has its chance to decide whether or not it allows the S-module to be

swapped.

To summarize, an S-module reaches its S-checkpoint must satisty the following

conditions:

¢ [Itisatits idle state.

¢ [t agrees to be swapped.

However, whether or not an S-module agrees to be swapped is an application specific
issue. In this thesis, to simplify this issue, it is assumed that an S-module is always
allowed to be swapped as long as it is at its idle state, because the S-module of new

version can be backwards compatible.

4.2.3.3 How to reach the S-checkpoint

Because there is a time constraint for swap transaction, a swap manager can not just

passively wait for an S-module to reach its idle state. On the contrary, a swap manager

-75-

has to help the S-module to reach its S-checkpoint.

To do this, the swap manager has to block and hold all the new service requests for the S-
module before it starts its swap transaction. This is essentially to synchronize the S-
application transaction and the swap transaction. In this way. until the swap transaction
completes, an S-module will no longer receive further invocations from its outside world

except those from its swap manager.

4.2.3.4 Some Exceptional Cases

Normally, with the help of the swap manager, it will not take much time for an S-module
to complete its operation and return to its idle state. Study shows that 75% of operations
occur at level of milliseconds and 90% of operations occur in less than one second in a
Sparc 5 workstation [10]. However. the following cases may prevent it trom finishing its

operations within a time constraint (e.g. the time constraint for the swap transaction):

¢ [f one S-module depends on another S-module to complete its operation,
when their swap manager tries to block and hold their new service
request, their operation may run into deadlock. As a consequence, the S-
module can not complete its operation and reach its S-checkpoint, so the

swap transaction will be aborted because of a time-out.

¢ There are some operations in S-module that may exist for a long time,

-76 -

such as a unbounded loop. a socket that is in communication, a running
thread which seems to have no termination, and so on. In this case, the

swap transaction will also be aborted due to time-out.
4.2.3.5 Avoid deadlock

As was discussed above, deadlock may occur when there is dependency between (among)
two (or several) S-modules in a swap transaction. The solution for this problem is to
identify every service request from those clients and distinguish them from those method

invocations inside the application.

Fig. 4.2 gives an example on how to identify S-application transaction and swap
transaction to avoid deadlock. Suppose the intertace that the application provided to its

clients like:
public void method1():

Then inside the application, it will interpret this interface as:
public void method I (long txnID):

The extra parameter, txnID, is assigned by the swap manager and used as a transaction

identity inside the application.

-77 -

Server interface for its clients

e

public void method 1():

Swap Manager

at the beginning of
swap transaction

interface actually used among
S-modules in the server

1.e.

public void method I (lgpg txnID)

m

S-proxy of an Smodule

setBlock(Delay. StxnlID)

forward call

hold call

L

ie.

public void method I(long txnID)
{
if('isBlocked() | txnID<StxnID)
[
____'____Smodule.mcthod l(txnlID):

......

......

method | (txnlD);

}
}

Fig. 4.2: Identify S-application Transaction and Swap Transaction

When the swap manager starts to block service requests for its S-modules, the swap

transaction will also get an StxnID. As it depicts in Fig. 4.2, an S-proxy will only block

those transactions with a txnID larger than the StxnID. In another words, it will not block

~78 -

those S-application transactions started earlier than the swap transaction. In this way,

every S-module has its chance to complete its stale operations and return to its idle state.

4.2.3.6 Roll back long running operations

For long running operations. the swap manager may not be able to wait for them to

complete within its time constraint of the swap transaction.

[deally. this problem could be solved if such a long run operation could be suspended. its
state and tasks can be transferred to the new S-module, and the new S-module can
continue the operation. However, in reality. it is quite difficult to interrupt some
operations such as /O and multi-thread operations without losing their states [27]. [t is
sometimes impossible to pass the breuk point to the new S-module with different

implementation.

Now that it is impractical to wait for those long running operations to complete and it is
difficult to suspend them in the middle way and transfer its state, rolling those current
transactions back to their beginning states seems a better solution for the problem. In this

way, both the new S-module and the stale one can find a common point to hand over.

However, rolling those long running operations back is also not easy. A scheme is needed
to suspend or even interrupt the application transaction at a proper point. Moreover, if

those operations have already changed the state of the application, then the roll back

-179 -

transaction has to roll back the state of the application as well.

To summarize, as explained above. logging and shadowing are two proposed general
strategies to keep the consistent state of transaction and can be used in this roll back
strategy. However. it should be realized that there is no generic scheme to tackle the long
running operation case. In other words. the mechanism for rolling back some long
running operations could be very application specific and the implementation details of

this strategy is out of the scope of this thesis.

In the next section, state diagrams of S-module. S-proxy and Swap Manager are

presented to describe the swap transaction.

4.3 The state machine of an S-module

Fig. 4.3 shows the state machine of an S-module. An S-module starts out idle as soon as

it is instantiated.

For the S-module invoked by the application. it may progress to the busy state when it
responds to a stimulus. [t moves back to its idle state when there is no operation in
processing. As described in the preceeding context. the swap manager will notify and

help the S-module to move back to its idle state.

-80 -

idle busy

request forward by its Sproxy_

‘ instantiate [operation completed]

ee

return to service L
!]
{Sproxy call for state cranster]
InSvrap
satStace(getScace) j

Fig. 4.3: The state machine of an S-module

For the new S-module. it stays in its idle state after being instantiated by the swap

manager. [t effectively enters its InSwap state upon the command from its S-proxy.

If the swap transaction succeeds. the new S-module will come into service and the stale
one will move to its Cleanup state. Otherwise, the stale S-module will resume to provide

service while the new one moves to its Cleanup state and is ready to be garbage collected.

Although the state transition of an S-module is apparently simple, it is critical for a swap
transaction. A successful swap transaction relies on the stale S-module to progress from

its busy state to the idle state as well as transfer data to the new one.

_81 -

An S-module may have the following reasons to abort the swap transaction:
L The stale S-module is not ready to be swapped.

] The stale S-module can not move from the busy state to the idle state within

the time constraints.
¢ The stale S-module throws an exception during the process of getting its state.

¢ The new S-module fails in the processing of mapping states that it has

extracted from the stale S-module.

4.4 The state machine of an S-proxy

In the structure of the software hot-swapping architecture, an S-proxy plays an important
role in delegating its S-module to deal with clients. [t also has the capability to support

incremental interface changes to a new S-module.

[n the swap transaction, the S-proxy acts as a middle-level transaction manager in
coordinating the activities between the stale S-module and the new one. Through this
transparent layer, the simplicity and robustness of the swap transaction is greatly

enhanced.

Fig. 4.4 shows the state machine of an S-proxy. After an S-proxy is created, it starts out

-82 -

idle and moves to [nService state on the invocation of the clients to provide service on
behalf of its S-module. [n normal operation condition, the S-proxy stays in the InService

state relaying communications between client and S-modules.

—

crea idle) ca)]l from clienrs [InService) secBlock (timeOur W

prepare

SwapTransaction

\

rimedut or failed in state transter] voting

[S-checkpoint reached and state transfered]

Fig. 4.4: The state machine of an S-proxy

When the Swap Manager calls an S-proxy for setBlock, the S-proxy moves to the

blocked state and begins to block and hold all the new calls to the S-module.

When the Swap Manager asks the S-proxy to prepare, the S-proxy moves to its voting

state at which it waits for the swapping status of its S-modules and reports the result to

-83-

the Swap Manager. There are two possible return values for voting:

¢ If the stale S-module fails to reach its S-checkpoint for hot-swap, or the
new S-module fails to get the state from the stale one, or the Swap
Manager call for abort, the S-proxy must signal this with a return of

ABORTED, then effectively entering the aborted state.

¢ [f S-modules (both the stale and the new one) are ready for swap, the S-
proxy will return PREPARED. thereby move to prepared state. The S-
proxy stays in the prepared state until it is told by the swap manager to

commit or abort.

[f the S-proxy receives a prepare call when it is not in blocked state. it throws

cannotPrepareException.

If S-proxy receives an abort call, whether in the blocked. voting, or prepared state, it
should move to the aborted state, make the stale S-module resume and ask the new S-

module to cleanup.

[f S-proxy receives a commit call when it is in the prepared state, it should move to the
committed state. In this state, the S-proxy will replace the stale S-module’s handle with
the new one’s, and make the new S-module operational. Meanwhile, it removes the stale

S-module’s handle and asks it to cleanup.

-84 -

4.5 S-manager in swap transaction

4.5.1 The state machine of the Swap Manager

Fig. 4.5 shows the state machine of the Swap Manager. The Swap Manager’s initialized
state is the listening state. in which it waits for messages at a specific port. When it
receives message trom an administrator for hot-swapping. the Swap Manager moves to

SecurityCheck state and does the security checking.

If the message fails to pass the security check, the Swap Manager then discards the message
and returns to its listening state. Otherwise. the Swap Manager will move to the prepare

state.

In its prepare state, the Swap Manager first load the byte codes and instantiate the new S-
modules. If there are any problem in instantiating those new S-modules, the Swap Manager
moves to its cleanup state. Otherwise, it will try to find all the participants for the swap

transaction.

If Swap Manger successfully gets all the participants, it moves to its voting state, at which
the Swap Manager will first ask all the participating S-proxies to intercept and hold all the
new service requests for their corresponded S-modules so that they can return to their idle
state. When reaching its S-checkpoint, the new S-module will extract the state from its stale

S-module and try to map its state. The outcome, either ABORTED or COMMITTED, will

-85-

be reported to the swap manager.

start__ . i
._—,[m\ [nessage received] iSecurityCheck

\ encry/check
] [£ail]
- |Cleanlp \
(pass]
SvapTransaction
ahorted
[£a1l] \
~
(Prepare
axit/findParcticipants
sntry/insctantiace
[any participant vote abort]

A itted [all participants vote prepared]
[3uccess]
N

r voting

‘ = do/call prepare

\ entry/setBlock

Fig. 4.5: The state machine of the Swap Manager

It any of the participants return ABORTED either because it runs into exceptions, or

because it is not ready, or because it times out, the Swap Manager must abort the hot-swap

-86 -

transaction. To abort the transaction, the Manager moves to the aborted state. In this state,
the Manager should invoke abort on all participants even if some of them have voted

PREPARED.

[f all the S-proxies vote PREPARED. the Swap Manager will move to committed state and

invoke the participants’ commit method.
Eventually the Swap Manager will do a cleanup job and move back to its listening state.

4.6 The two-phase commit transaction model

Through the state machine of each component in the hot-swapping architecture including
the S-module. S-proxy and S-manager. their roles and state transformation in the swap
transaction have been described in detail. Every unit of participants in the swap transaction

has three kinds of tasks to do. namely prepare-task, commit-task and abort-task.
Prepare-task is composed of the following activities:

® A stale S-module has to move from its busy state to its idle state with the help of its

swap manager.

& [f the stale S-module agrees to be swapped, it will transfer its state to its correspond

new S-module.

-87 -

¢ [f the above activities are completed successfully within the time constraint, the
result will be PREPARED and the corresponded S-proxy will move trom its voting
state to its prepared state. Otherwise. the result will be ABORTED and the S-proxy

will move to its aborted state.

Commit-task is composed of the following activities:
¢ Every stale S-module to be swapped is removed from the application.
¢ Every new S-module is ready for providing the application service.

¢ [n the meanwhile, every participating S-proxy has to move trom its committed state

to its [nService state after receiving the commit instruction from the swap manager.
Abort-task is composed of the following activities:
¢ Every participating stale S-modules is ready to continue their application services.
¢ All the new S-modules are removed.

¢ Every participating S-proxy has to move from its aborted state to its InService

state.

For every unit of participant, its activities in the swap transaction are sequential. That is, its

prepare-task is followed by commit-task or abort-task. However, from a system point of

- 88 -

view, the transaction service of the swap manager can have different models to manage the
activities of those participants in the swap transaction, namely a sequential transaction

model and a concurrent transaction model.

A sequential transaction model means that every unit of participant in the swap transaction
will line up to process its swap transaction. One partictpant will do its prepare-task first. If
the result is PREPARED. then the next participant will do the same job. [f every participant
is PREPARED. then every participant will do its commit-task one by one. If anyone is

ABORTED. then every participant has to do its abort-task.

A concurrent transaction model means that all units of participants process their swap
transaction concurrently. That is, they will do their prepare-task simultaneously and then
they will do their commit-task or abort-task according to the decision of their swap

manager.

Suppose Tp denotes the time that a unit of participants need to do its prepare-task, Tc
denotes the time that a unit of participants need to do its commit-task, and n denotes the
number of all the units of participants that join the swap transaction. It is also assumed that
Tp and Tc are same for all the units of participants. The following table shows the different

costs of time for swap transaction with these two different models

-89 -

Table 1:

The total time for swapping n S- concurrent transaction model sequential transaction model
modules

On machine with single processor n*(Tp+Tc) n*(Tp+Tc)

On machine with mulu-processors Tp+Tc n*(Tp+Tc)

People ure prone to believe that a concurrent model always has better performance than a
sequential model. Actually. on a machine with single processor. a sequential transaction

model has the same pertormance as a concurrent transaction model.

However. on a machine with multi-processors. the concurrent transaction model is better
than the sequential transaction model in terms of the performance. In this case. with the
number of participants increasing, the time for the sequential swap transaction is increasing
while the time for the concurrent swap transaction remains the same. As was discussed
before, the swap time is very crucial for the hot-swapping technique. It not only indicates
how long the swap transaction has interrupted the S-application service, but also plays an
important role in determining whether the swap transaction can succeed or not. Therefore,

our hot-swapping technique applies the concurrent transaction model.

The concurrent transaction model is essentially a one-thread-per-task model, because every
participant will do its task on its own thread. However, creating a thread is not a low-

overhead operation. [n fact, many system calls are involved to spawn a thread (In Windows

-90-

NT. for example. there is a 600-machine-cycle penalty imposed every time when entering
the kernel [28].) To shorten the swap transaction as much as possible, we can apply the
thread pool technique to manage those transaction threads. The basic ideal is that instead
of spending time to create threads during the hot-swapping transaction. we can pre-create
a bunch of threads for those participants, and have them sitting around waiting for their
transaction tasks. When it is time for swap transaction, simply wake up those existing
threads and let them do the transaction tasks. These threads can also be recycled to perform

commit-task or abort-task after prepare-task.

Fig. 4.6 shows the two-phase commit transaction model which is inspired by Jini
transaction model [21]. Since many participants may join the swap transaction and the swap
transaction has time constraint, to improve the efticiency of the swap transaction, we have

implemented this model to make all the participants run their tasks concurrently.

At the beginning of a swap transaction, the swap manager creates a prepareJob which is a
threadpool containing a finite number of prepareTask threads. Each threads runs one

prepareTask of a unit of participants and all the threads run concurrently.

If all the units of participants return PREPARED, the swap manager will create a
commitjob consisting of many commitTasks to invoke commit on each participant.

Otherwise, the swap manager will create an abortJob and ask all the participants to abort.

-9] -

[t only one unit of participants joins the swap transaction, the swap manager simply invokes
its prepareAndCommit method, and decides to commit or abort the transaction according

to the result returned.

Swap Manager

) only one unit of participants
[multiple units of participants] [only P P l

)¢

[prepareJob <prepareAndCommiD

Task Threads
Result
[Result is all PREPARED [Result is ABORTED]
commitJob w abortJob
Task Threads J Task Threads

Fig. 4.6: The two-phase commit transaction model

CHAPTER 5.0 IMPLEMENTATION
AND APPLICATION

In the proceeding chapters, the fundamentals, the architecture and the transaction of our
software hot-swapping technique have been introduced. This chapter will focus on the
implementation and application issues related to the software hot-swapping architecture
and its transaction. The overall framework and implementation scheme including use
case diagram and class diagrams is illustrated in detail. Hot-swupping application have
been applied in various scenarios and results are presented to validate the concept of this

research.

5.1 The implementation of the software hot-
swapping architecture

The design of the software hot-swapping architecture follows the object-oriented design
methodology and UML (Unified Modeling Language) is used to present the use case

diagram, class diagram and sequence diagram.
5.1.1 Use case diagram

Fig. 5.1 shows the use case diagram of the software hot-swapping architecture. It depicts
the fact that clients of the application only interact with the application service and the

hot-swapping transaction is transparent to those clients. The administrator is designed to

-93-

only interact with the listening service and time-control service of the swap manager, the
swap transaction is meant to be fully automatic so that the error-prone and time sensitive
actions are solely handled by Transaction Service. New S-modules may interact with
many services of the swup manager and may join the application service after the swap

transaction commits.

//-—\\ /ﬁ
’ -
\\‘_ /// “\ A
7 R
e Listening Service Storage Service
>
{
N .
System . . R e o —Wﬂ(\/—\/
Admunistrator S - ~
Secunty Service Lifecycie Service
2])
TS O
, {) -
. e SN— , y
—_— ”/ \\
Time Control Naming Service -
: Clients
N Ve
<) N
~. -
S
Transaction Service Application Service
~ \\ . d
N, e
State Monitor

Fig. 5.1: Use case diagram for the software hot-swapping architecture
5.1.2 The class diagram

After presenting the requirements of the use case, the hot-swapping architecture is

-94 -

designed. In Fig. 5.2. the class diagram shows only the pertinent classes and interfaces in

the software hot-swapping architecture.

According to Chapter 3, the class diagram comprises several Kinds of classes for
SwapManager (i.e., Transaction, Security. SCreater. Naming. StateMonitor and Sproxy.)
Application (i.e., [ISmodule. Smodule). Administrator (i.e.. SMprotocol. NewCommer)
and Client. [n the following two sections, the interface of S-proxy named I[Proxy and a

sequential diagram will be used to describe those relationships among those classe

S.
ccThveadss e . Classloader _Client _
SwapManagerSTheManager - - - SwapManagerSSCreater, ... - .7 I

R, Lo !
RN Senalizable ‘;"fgr'e;.’a'>>
ey <
N - T Application
— _ i ————
- Packer Ty
e e - - . StateMonitor .
SecuretyManager . A —————— sy
——— S . T™—i Sproxy
B - S T Smedue T
SwapManager$Transaction . NewCommer ——m—
— —— N, T L
. A " Naming |
\h e \\ S mmm o _— — !
__#*Abo tJob . N \\ SMprotocol . Smodule ; | —
———"‘m“_ ‘\4‘ Job E : \\\ e \ (——lL—-~v~
o i ! i ISproxy
S Ll
e e </) \ : -
' ~ L ~ - !
PrepareJobf B i “ Administrator | \‘\ '
e ’ i E N PR —— \
‘ \ NN)
: ~. NN \
.. : S —— s NN -
* PrepareAndCommitob :| : CommitJob <<Aunable>> : : TaskManager \ \ Vol
- TaskManager$Task| —— AN |
- . /"‘7“7 . :‘//-!.v_m_—- \\ \\ ;
T i e e
[S <<Thread>>
| — . <<Thread>> .
,_______'PamcapantTaskj TaskManager$TaskThread ! | SwapManager
o ——— j SR —

Fig. 5.2: Main Classes Diagram for the Software Hot-swapping Architecture

-95-

5.1.2 Interface for the S-proxy

The interface for the S-proxy can be classified into several categories, namely
Servicelnterface, NewServicelnterface, Controllnterface, Lifecyclelnterface and

TransactionIntertace.

As it was described in the chapter 3, an S-proxy has the same service interface as its
original S-module with which they are instantiated together. In addition, it also has a
NewService interface through which any new methods of its new S-module are all

accessible.

Through the Controllntertace of an S-proxy. its swap manager can block and hold service
requests for the corresponding S-module. in order to help the S-module transtorm from
its busy state to idle state. It must also be able to release the block when the S-module
wants to resume its service. Every S-proxy also has an instance of StateMonitor which
can automatically probe whether the S-module has reached its S-checkpoint or not by

using an internal procedure counter.

[ntertace Controllnterface(
public synchronized void setBlock(long Delay, long StxnID);
public synchronized void unBlock();

public synchronized boolean isBlocked():

- 96 -

Every S-proxy provides a Lifecyclelnterface to allow its new S-module to register and

come into operation.

[nterface Lifecyclelntertace{
public void register(ISModule newSModule):

public boolean upGrade():

The Transactionlnterface of an S-proxy is to enable the S-proxy to join the swap
transaction. As we described in last chapter. the swap transaction is a two phase commit

transaction.

[nterface Transactionlnterface {
public int prepare(long waitFor) throws UnknownTransactionException;
public void commit() throws UnknownTransactionException;
public void abort() throws UnknownTransactionException:

public int prepareAndCommit(long waitFor) throws UnknownTransactionException:

}

.97 -

Fig. 5.3 shows the relationship among clients. other S-modules, non-S-modules, swap

Stale S-module

Servicelntertuce

manager, S-proxy and its corresponding S-module.
1}

(S-Proxy
Servicelnterface
\

NewService[ntert’acac

AdministrationInterface

VersionControllnterface
StateControlinterface

Controllntertac

Lifecyclelntertac

Transactionlntertace StateControllnterface

“‘ AdministrationInterface

VersionControllnterface

‘ Servicelnterfuace

Newlnterface

New S-module

Fig. 5.3: The important roles of an S-proxy

_08 -

5.1.3 Sequence diagram

client LoX SManager proqress | | o le nevnodle
$_proxy SuapManager Progress S_module 5_aodule
1 |] 1 b

rl: operation |

InService [_1\ |
R 2: ‘gecTxnld’

T s e S

3:['13Blocked() g wnisomiD] mtount

_——_E. 4: ‘'operation’ (UA\ID)
voting : T

S: ouclount

— r

’L} _____ { _ _|InService fj

i RS
.
b b
-~
-
-

§:(*1sBlock | _setBlock Mﬁ)ﬂ

blocked

b

———-—c:i——-t::]———-—

7: [ualocked “ qmlD)StxnID] vairt(Delay) |
voting [\,
= 8: ’'prepare’ b |

b -———— G'_ oo I
| a: 1sldle |

!

|

[

]

|

|

!

|

!

: InSwy

et 1y | 10: sobesty] U] g
statert revurn ped—mm———— | 11: se(Scete(oluo eqetStAte)
PREPARED 12:{all FZPARED] ‘comait’]

S-nodule 18
at 1dle state

1f 1sldlie 13

J

13: upGrade committed

14: wnBlock InService shen

haeSnrrrennesms

|
i |
MLls: notifyAll |
|
L
¥

InService S

p———

|

|

|

!

|

| 3

r- rlé: cleanup
!

shorted N

([

18: unBlock

R,

InService vhen

|
I
I
I
S-proxy wnBlock |
: cleanup
o :’
|

Fig. 5.4: Sequence Diagram for the case of swapping an S-module

19: notityAll

e

20: cleanup

[

|

|

|

!

+

17:[anyonq |ABORTED] ‘ebort’ |
U shorted l I

| {

| i

| |

! |

I |

| |

| |

-99 .

The above sequence diagram describes the scenario of swapping an old S-module with a

new S-module:

Normally. a client sends its service request to an S-proxy. If the S-proxy has not joined a

swap transaction. it will forward this service request to its old S-module.

[f a system administrator decides to upgrade the old S-module, then a new S-module will

be prepared by the administrator and sent to the swap manager.

The swap manager is always listening at a specific port. Once it has received a message,
it first does a security check. [n the current design, it just verifies the password of the
incoming message. However, many security algorithms can be introduced into this
architecture through the Java Security APL. If the message can not pass the security
check. it will be discarded. Otherwise, it will be instantiated by SCreator which is a
customized class loader. The security manager will also verify if the new S-module has

implemented the [S-module interface.

The next step is to find the corresponding S-proxy through the naming service of the
swap manager and get ready for the swap transaction. Once the swap manager starts a
swap transaction, it will not get involved in another swap transaction until the swap

transaction is completed.

-100 -

Consequently. the swap manager will initiate a swap transaction and ask the participating
S-proxy to prepare. The S-proxy will first consult with the oid S-module to see if it is
willing to join the swap transaction. If the old S-module is ready, then the S-proxy starts
to block and hold service requests from those clients and keeps checking if the old S-
module has reached its idle state (S-checkpoint). If the old S-module can not reach its S-

checkpoint within the time constraints, the swap transaction will be aborted.

On the other hand. if the old S-module reaches its S-checkpoint within the time
constraints, then the new S-module will try to retrieve the state from the old S-module
and set up its own state according to its rule of state mapping. If there are no exceptions
in this process, then the S-proxy will return the PREPARED result to the swap manager.
Then the swap manager will move to the commit state. Otherwise. the swap manager will

move to the abort state.

In its commit state, the swap manager lets the S-proxy to do commitfob. Then the S-
proxy will switch the reference from the old S-module to the new one. release the block
and let the new S-module provide service. At the meantime, the old S-module will do its

cleanUpJob and be ready for garbage collection.

[f the swap manager is in its abort state, then the S-proxy will do its abortjob. It will
simply release service requests to the old S-module and thus the old S-module resumes its

application services. In the meanwhile, the new S-module is discarded.

- 101 -

5.2 Application of software hot-swapping
architecture

This technique has been already applied on a real application to upgrade SNMP version 3
security module [24], which demonstrated that our software hot-swapping technique has
great potential for upgrading software without taking down its service. Fig 5.5 shows the

structure of a swappable SNMP agent.

)
r s . aoent |
L MIB Instrumentation | swappable SNMP agent |

T T
Cummaqd R.cspondcr@ Nutification Originulurl Proxy Forwarder
Application .~ Application | Application
! !
. 1
v swappable SNMP engine ||
Dispatche . i Message Processing Scceurity Access Control
ispatcher l | Subsystem Subsystem Subsystem
b User-based Voo
PDU Dispatcher I — VIMP Security Model A':c‘:;s‘g;ﬁtmli
i Message Dispatcher g | MDSModule Model !
jul
[| -
% vamp [a—
Transport Mapping i |
(¢.£.RFC1906) i 1
L
A i |
Swap Manager
' Note: Shaded modules have been designed
UDP as S-Module

Network

Fig. 5.5: The structure of a swappable SNMP Agent

-102-

However, since there is no state issue for security module in the SNMP V3, the aboved
application can not demonstrate those most important services of our software hot-
swapping architecture. On the other hand. keeping the application in a consistent state
and doing hot-swapping transaction are key issues of our hot-swapping technique.
Without having proved that it can handle those challenge issues properly, the hot-
swapping technique would have no value. Therefore. an experimental application was

designed to verify the correctness and reliability of this technique.

5.2.1 An experimental application

The experimental application was designed to use all the services that our hot-swapping
architecture can provide in order to verify our hot-swapping technique and concept. The
application is ideal because it was not designed to use in the industry directly. However,
it demonstrated all the features of our hot-swapping architecture which the real industry

application may want to use.

5.2.1.1 The objectives and basic plan for the ideal application

The objectives and basic plan for the experimental application are as follows and they are

organized in such a logic fashion that complexity is increased gradually.

(1) To support hot-swapping one S-module in a swap transaction.

-103 -

This is to validate the basic utilities of the swap manager including listening service,
security service, lifecycle service, numing service and transaction service. In terms of the
transaction services, this application verities the prepareAndCommit utility which can

swap one S-module at a time.

(2) To support hot-swapping multiple S-modules in one single swap transaction.

Based on the last scenario, this is mainly to verity the transaction model with swapping
multiple modules. This scenario will mainly cover the facility of prepareJob and

commitJob.

(3) To accommodate time constraints and service request from clients during a hot

swap transaction.

In the preceding application cases, there were no service requests from those clients
during swap transaction and therefore all S-modules were actually at their idle state.
However, in reality, an S-module has to provide service for its clients and it is normally

not in its idle state.

Hence this application was to prove that the swap manager could help the S-module
move from its busy state to its idle state, and automatically detect the state change of the
S-module. In this process, the control facility and State Monitor facility would be

verified.

- 104 -

[f the S-module can reach its S-checkpoint within the time constraints, the swap
transaction should commit. Otherwise. the swap transaction should be aborted. Therefore,
if the time constraint is big enough, the swap transaction has a good chance to commit.

Otherwise, it is likely to be aborted.
(4) To illustrate how the swap manager keeps the integrity of the application

This scenario was designed to prove that the fucilitics and the mechanism of hot-
swapping architecture can keep the consistency of the application, which means that the
new S-module is able to get its state from the stale one and the transactions initiated by

client will not get lost.
(5) To swap several S-modules with dependent relationship

This scenario was designed to prove that the swap manager is able to swap S-modules

that have dependent relationship without running into deadlock.
(6) To invoke new methods on a new S-module through its S-proxy

This scenario was designed to verify the new-service facility of an S-proxy and ensure

that it can be used to access those new methods of a new S-module.

(7) To accommodate the security of the architecture

This scenario was designed to illustrate the security facility in the software hot-swapping
architecture. [f the password in a swap messaging could not match with the swap
manager's password or the new S-module has not implemented [Smodule interface, the

swap messaging will be discarded.

(8) To check the interruption of the application service

As was discussed in chapter 2. the hot-swapping technique is delay sensitive. So the
down time is a critical issue for the software hot-swapping technique. and the interruption

should be minimized as much as possible.

(9) To support the concurrency of the S-application during the process of swap

transaction

To minimize the interruption of the S-application, the swap manager only interrupts the
service of those S-modules which are participating in the swap transaction. Those S-
application transactions, which those swapping S-modules are not involved in. can still be

executed concurrently with the swap transaction.

- 106 -

§.2.1.2 The Application Illustration

To achieve the above objectives, an experimental application was designed to have all the
scenarios described in the previous section. Fig. 5.6 illustrates this model which has a

typical client-server relationship in a network.

The server application, which was composed by several S-modules. namely S1, S2, S3
and S4. would provide application service for its clients. The swap manager, which was
registered with S-proxies including SPL. SP2, SP3 and SP4 corresponding to those S-
modules. was designed to run on another thread to provide hot-swapping services for this
server application. A system administrator has prepared several new S-modules, namely

S11.S21,S31 and S41. to replace those running S-modules.

Through the network. the system administrator can remotely deliver those new S-
modules to the swap manager. Upon completion of system security check, the swap
manager is able to instantiate those new S-modules through its class loader and start the
hot-swap transaction. Figure 5.6 illustrates that through S-proxy SP1, the newly loaded S-

module S11 is to replace existing S-module S1i.

- 107 -

: Server
' Server application
Swap Thread
Manager
S1]) Ppassword + time constraint Thread

| ‘:\. '
9

System Administrator

B |

A simple Client-Server application system,

Fig. 5.6: An experimental application of our hot-swapping technique
The swap transaction can be committed base on the following two criteria:
* All the participants can reach their idle state within the time constraints.
* All the new S-modules can get state from the old ones.

To accommodate the state transfer, every S-module has static state and dynamic state.
The static state is the handle of the output frame, while the dynamic state is a counter that

indicates how many times those clients have invoked the S-module.

- 108 -

To add the time constraint, the system administrator gives a maximum swap time

indicating how long it can be tolerant for the swap transaction.

To accommodate that every S-module would take time to complete its operation, a delay

is inserted into every method of those S-modules.

Method 1(){
try |

Thread.sleep(delayTime):
jcatch(InterruptedException iex){ }

Output;

[f the time constraint is longer than the method execution time. then the swap has a good
chance to commit. Otherwise. the swap transaction may be aborted. Therefore, the value
of the delay time and time constraint can be adjusted to verify the swap transaction

mechanism.

To illustrate the support of complex dependent relationships among S-modules, Figure
5.7 shows that there is a recursive call among S2, S3 and S4. [t does matter that in

whatever order the modules are swapped.

-109 -

Swap
ﬁ

& 8 & 6
Fig. 5.7: Swap S-modules with dependent relationship

5.2.1.3 The Application panel and results

There are three panels in this application representing three main components in the hot-

swapping architecture:
A server node which has application thread and a swap manager thread running.
A client node which can send many service requests to the server.

A system administrator who can prepare new S-modules and send hot-swapping

request to the swap manager.

-110-

Through the administrator panel in Fig. 5.8, a system administrator can prepare some new
S-modules which are listed in the NewSomduleList box. The time constraint tor every
swap request can be set in Timeout box. For example, the time constraint in Timeout box
is 40 milliseconds as showed in Fig. 5.8. For security reason, the panel user needs a

password to be able to send out swap message.

Swap Administrator Panel =

SIL S3 NewSmoduleList TargetProxyList Timeout (ms)
of new version SModulet1 SEroyt [40
are Prepa:led SModule31 P2yl
for upgrading | Destination Nam
Sl and S3 in ¢
the application | pmerdott

Add l Remove Reset Destination Port

’ , [8000

-_*war; Feqcileﬁ Information Board |
1s refuse , :
if password\\uou have wrong password. try again! 2l -

is incorrect The candidate number is 1
Smodule are sent out!

The candidate number is 1
The candidate number is 2

Fig. 5.8: Administrator panel

-t -

Through the client panel in Fig. 5.9, the user can indicate which S-module will be the
service provider and how many service requests will be sent out to it. The number of
service request can be used to verify if there is any transaction being lost in the process of

hot-swupping.

Apphcalion Chent E3 I

Please Set The Parameters To Run!
Machine ' _
Name of Server Name Invocation Times
Server \Fpmerdon [5

Request

spl EI

spi

Continue

sp3
spé
sp1 new method

Fig. 5.9: Application Client panel

On the server panel of Fig. 5.10, there are three text boxes iilustrating different outputs.

The top one is the output of S-module one which indicates the version of the S-module

and how many times it has been invoked.

The middle box indicates the new method of a new S-module has been accessed through

the new-service interface of its S-proxy.

The big box is the output of recursive call among St. S2 and S3. The result indicates that
the swap manager can handle the dependent relationship among S-modules without

running into deadlock.

PNy
L <A

S1is in operation SModule1 Invocation Counter

SM1_Ver_1 executed 10 tmes

Smodule S1 is accessed New Methods Invocation
through dynamic - .
messaging of its proxy\l' SM1 Ver_1 invoked (NewMethod) 5 times {a+b}
Recursive Execution
SM2_Ver_1 method?2() invoked 2 times By

d dent relationships
ependent refationships - SM2_Ver 1 method!() invoke SM3 3 times

o S-module S2 SM3_Ver_1 method1() invake SM4 3 times
among S-modute 5=, | SM4_Ver_1 methodi() invoke SM2 3 times
53.54 SM2_Ver_1 method2() invoked 3 times

SM2_Ver_1 method1() invoke SM3 4 times
SM3_Ver_1 methodi() invoke SM4 4 times
SM4_Ver_1 method1() invoke SM2 4 times
SM2_Ver_1 method2() invoked 4 times

Fig. 5.10: Application server and its swap manager

-113 -

Fig. 5.11 indicates that S-module S1 and S-module S3 are swapped successfully without

losing their states and transactions, as the values of those counters are correct.

S1 is upgraded by Sl11

SModule1 Invocation Counter

| SMT_Ver2 executed 10 times
NewMethod is invoked

and it is upgraded WOCB Invocation
| SM1 Ver_2 invoked—¢NewMethod) 5 times {a%b}

Recursive Execution

S3 is upgraded a]
while it’s state is \%1 method1() invoke SM3 4 times
preserved SM3_Ver-2 method1()invoke SM4 4 times

SM4_Ver_1 method1() invoke SM2 4 times
SM2_Ver_1 method2() invoked 4 times

SM2_Ver_1 method1() invoke SM3 5 times
SM3_Ver_2 methodi() invoke SM4 § times
SM4_Vver_1 method1() invoke SM2 5 times
SM2_Ver_1 method2() invoked $§ times

K

Fig. 5.11: The result of swapping S-module S| and S-module S3

Our test proved that if the S-module is not in the idle state, the service interruption for
hot-swapping transaction depends on how long an S-module can move from its busy state

to idle state.

114 -

Fig. 5.12 demonstrates the procedure of swapping S-module S| and S-module S3 in the
same swap transaction. As was mentioned in section 5.2.2.2, to simulate the time of
executing every operation. we hereby insert 40 milliseconds delay into every method. In
this case, the service of S-module S1 and S-module S3 were blocked for a while (20 ms).
Since the time constraint that given is longer than the blocking time. so the swap

transaction can be commit.

-
» Command Prompt - java ApphcationServer 40

D:\source\ﬂgwyFinal?java ﬂpplicationServer 40
nunnn swap instruction receiveded wmxxs

The delay time that inserted

wuxun FUn classloader 0 =wsux in every method

mxunn run classloader 1 w=wx=
participants added 1
participants added 2

There are 2 participants join swap transactlon
SProxy3d is prepared! :
SProxyl is prepared! o
SProxy3 is COMMITTED! L
$$$ the sproxy3d has been blocked for 20 ms‘$$$
SModuled is cleanUp! -
SProxyl is COMMITTED! ;
$$$ the sproxyl. has been blocked for'20,ns $$$
SModulel is cleanUp!
there are 2/2 ‘participants haue been connltted’

r:lﬂi#ﬂ end of the swap transachon mmur A

Fig. 5.12: The print out of swapping S-module S| and S-module S3

[f the insert delay is 100 ms instead of 40 ms, then the swap transaction would be aborted

because of time out. Fig. 5.13 demonstrates this scenario.

start

timeout

aborted

—
% Ma » Command Prompt E=1E
|

/ID:\source\AgwyFinal> java ﬂppllcatlonServer 100
{e*= server application receive request ==
i**** the request is spl

iffrom SModulel at state 1

|$$3$ the request is spl

i[Ffrom SModulel at state 2

ew* server application receive request w»w=
[$$$% the request is sp3

'1$8%$ the request is spl

from SModulel at state 3

$$$$ the request is sp3

nnuue suwap INnstruction receiveded =mww»

[$$3$ the request is spl

[From SModulel at state 4
e run classloader @ swwexs
wnuun PuUn classloader 1 wwwwxx
; participants added 1

' participants added 2

There are 2 participants join swap transactlon
SProxy3 1s prepared! o
swap time out! *§¥3~'
$$$ the sproxy3d has been blocked for 30 ms
SModule3l is cleanUp! o
SProxy3 is ABORTEDY o
$3$$ the sproxyl has been. blocked for 26 S $$$N
SModulell is cleanUp' ' '
SProxyl is ABORTED! - i
there are 2/2 part1c1pants have been aborte

Hﬂ#ﬂﬂ end of the suap tr"nsactlon ﬁﬂﬂﬂ
$$$$ the ‘request is sp3 Tae

Fig. 5.13: The result of aborting a swap transaction

- 116 -

CHAPTER 6.0 CONCLUSIONS

6.1 Summary

The thesis began with a discussion of the importance of a sound software maintenance
approach for distributed. mission critical software applications. Pros and cons of many
existing software upgrade strategies. including patching, redundant device, parallel
processor. dynamic object technology and mobile code technology. were reviewed. It was
noted that none of these approaches provides an adequate yet generic solution in
upgrading software on the fly without disrupting its services. It was further realized that
without a sound underlying software infrastructure to provision for future evolving
changes at initial design stage, a dynamic software upgrade on the fly is just not going to

be realistic.

A new approach called software hot-swapping technique was therefore proposed to
accomplish a simple. flexible and robust infrastructure to achieve software hot swapping.
A thorough discussion of fundamental swappable software requirements such as
modularity, dynamic extensibility, code mobility and network security led to the
conclusion that object oriented paradigm combined Java technology provides the best
foundation for the proposed hot swapping technique, which is a solution at the

application level.

-N7-

The next step was to proceed to introduce the overall software hot swapping architecture
and its major components, which included S-module, S-manager, S-proxy and system
administrator. A detailed description of the roles, characteristics and services of each
component were presented, followed by an overview of the challenging issues regarding
the hot swapping transactions. A transaction strategy was then proposed to guarantee the

integrity and continuity of the system operations.

In order to demonstrate the applicability of the hot swapping technique. an application

was developed and typical test cases were implemented and analyzed.

[t is also important to realize that there are some trade-off in applying this software hot-

swapping technique.

¢ To configure the application into S-module format. it introduces some complexities.

¢ To generate an S-proxy for an S-module, it occupies extra memory.

¢ To represent an S-module, an S-proxy introduces some overhead in processing

messages.

¢ Although the interruption for the application service is minimized, it is still takes time

for those S-modules, which are to be swapped. to reach their S-checkpoint.

- 118 -

6.2 Conclusions

The main contributions of this thesis are

A new software maintenance approach, the software hot swapping technique, is
developed for upgrading distributed. mission critical applications. This technique
provides a practical mechanism to systematically conduct hot-swap of software on

the fly without taking down its services.

Swappable module concept is introduced based on object oriented paradigm and
Java technology. The proxy pattern in software hot-swapping architecture is

applied and enhanced.

A generic strategy on how to keep the state integrity of an application was detined.
A mechanism for automatically detecting the checkpoint in order to engage the

new S-module and disengage the stale one is also implemented.

A two-phase commit transaction model combined with thread-pool technique was
developed to ensure the robustness of the system and minimize the interruption of

the software application services, inspired by the Jini transaction design.

The challenging issues regarding the implementation of the hot-swapping tech-
nique including referential transparency problem, dependant relationship with
deadlock problem, and interface changing problem was analyzed and many com-

prehensive solutions were provided.

-119-

6.3 Directions for Future Work

A good research topic never comes to an end. The software hot-swapping technique
brings some profound concept for the software maintenance and network reconfiguration
management. Based on our current achievement. future research can be pertormed in the

following areas:

¢ It is very important to apply this technique to a large-scale mission critical application.
By doing so, some potential problems could be identified and their solutions could be
further studied as well. Thus the software hot-swapping technique will become more

mature.

¢ Further researches are needed on how to modularize an application into S-module
format and how to create a Fuctory fuacility to automatically generate S-proxy and S-

module. Java bean technology could be a good reference for this direction.

& Some solutions are needed to handle long life operations, especially on how to

interrupt the operation and rollback the application transaction.

¢ Our two-phase commit transaction model can be extended to distributed two-phase
commit transaction model, which can be used to swap S-modules both on client side and
server side in the same transaction. By doing this, it will allow us to have more flexibility

and apply our hot-swapping technique to more applications.

-120-

¢ Strengthen the security in our hot-swap architecture. Otherwise the hot-swapping

technique can bring unaffordable risk for the sensitive network applications.

¢ [t is also necessary to conduct performance study on the hot-swap technique to obtain
further understanding on how much the hot-swapping technique, it applied, can aflect the

performance and robustness of those applications.

¢ CORBA 3.0 enriches CORBA's feature with pass by value capability and makes it
possible to distribute object through ORB. As CORBA is a language independent
architecture, it can become a powerful vehicle tor our software hot-swapping technique
and extend the hot-swapping technique to that software written in languages other than

Java.

REFERENCE

[1] C. Bathe, "Patch,” URL: http://www.whatis.com/

(2] B. P. Lientz. E. B. Swanson and G. E. Tompkins, "Characteristics of Application

Software Maintenance.” Communications of the ACM 21 (June 1978), pp. 466-471.

[3] S. R. Schach. "Classical and object-oriented software engineering.” 3rd ed. The

McGraw-Hill Companies. Inc., 1996

[+] P. Robertson, “Integrating legacy systems with modern corporate applications,”

Communications of the ACM, Vol. 40, No. 5. Pages 39-46. 1997.

[5] R. E. Phillips, "Dynamic objects for engineering automation” Communications of the

ACM, Vol. 40, No. 3, Pages 59-65, 1997.

[6] R. Laddaga, and J. Veitch, "Dynamic object technology” Communications of the ACM,

Vol. 40. No. 5, Pages 36-38, 1997.

[7] Y. Wang, "Integration of Mobile Agent Environment with Legacy SNMP", Thesis

submitted for the Master of Engineering degree, Carleton University, August 1998.

_122-

[8] D. L. Parnas, "On the Criteria to Be Used in Decomposing Systems into Modiles.”

Communications of the ACM 3. no. 12 (December 1972): 1053-38.

[9] B. Venners, "Inside the Java virtual machine.” The McGraw-Hill Companies, Inc.. 1998

[10] S. McConnell. "Code Complete: a practical hundbook of software constrction.”

MicroSoft Press. 1993

[11] A.C. Veitch and N.C. Hutchinson. "Kea - A Dynamically Extensible and Contigurable
Operating System Kernel”, Proceedings of the 1996 Third International Conference on

Configurable Distributed Systems (ICCDS 96). 1996

[12] P. Green. "Multics Virtual Memory - Tutorial and Reflections,” available at URL: ftp:/

/ftp.stratus.com/pub/vos/multics/pg/mvm.html

[13] J. Kramer and J. Magee, "Dynamic Configuration for Distributed Systems.” IEEE

Transactions on software engineering, VOL. SE-11, No. 4, April 1985.

[14] S. K. Raza, "A Plug-and-Play Approach with Distributed Computing Alternatives for

Network Configuration Management", Thesis for Master degree, Department of Systems

and Computer Engineering. Carleton University, 1999

[15] "Jini Technology Architectural Overview” available at URL: http://java.sun.com/

products/jini/whitepapers/architectureoverview.pdft

[16] "What is Jini" available at URL: http://java.sun.com/products/jini/whitepapers/

whatisjini.pdft

[17] "Jini TechWhy Jini Technology Now?" available at URL: http://java.sun.com/

products/jini/whitepapers/whyjininow.pdf

[18] R. Ortali. and D. Harkey. "Client/Server Programming with JAVA and CORBA",

published by John Wiley & Sons, Inc, 1997.

[19] "Business Objects Interoperability Specification” available at URL: hup://

www.dataaccess.com/dat/Download/Interop.PDF

[20] "Common Business Object Facility Proposal” available at URL: hup:/

www.dataaccess.com/dat/Download/Boal0.PDF

[21] "Jini Transaction Specification” available at URL: http://java.sun.com/products/jini/

S124-

specs/transaction.pdf

[22] Gang Ao. "Software hot-swapping Techniques,” Technical Report SCE-98-11,

Systems and Computer Engineering, Carleton University, December, 1998.

[23] E.Gamma. R. Helm. R.Johnson, and J. Vlissides. "Design Patterns, Elements of

Reusable object-Oriented Software” Addison-Wesley Publishing Company, 1995.

[24] F. Ning. "S-Module Design for Software Hot Swapping Technology.” Technical

Report SCE-99-04, Systems and Computer Engineering, Carleton University. May. 1999.

[25] J. Bacon, "Concurrent systems,” Addison-Wesley, 1997 2/e.

[26] P.A. Bernstein. and E. Newcomer, "Principles of Transaction Processing,” San

Francisco: Morgan Kaufman, 1997

[27] S. Oaks, and H. Wong, "Java Threads.” OReilly, 1999 2/e

[28] A. Holub, "Programming Java threads in the real world, Part 8," available at URL:

http://www javaworld.com/javaworld/jw-05-1999/jw-05-toolbox_p.html

125 -

-126 -

